Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/104/21/10.1063/1.4880099
1.
1. R. Willett, J. P. Eisenstein, H. L. Stormer, D. C. Tsui, A. C. Gossard, and J. H. English, Phys. Rev. Lett. 59, 1776 (1987).
http://dx.doi.org/10.1103/PhysRevLett.59.1776
2.
2. W. Pan, J. S. Xia, V. Shvarts, D. E. Adams, and H. L. Stormer, Phys. Rev. Lett. 83, 3530 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.3530
3.
3. I. P. Radu, J. B. Miller, C. M. Marcus, M. A. Kastner, L. N. Pfeiffer, and K. W. West, Science 320, 899 (2008).
http://dx.doi.org/10.1126/science.1157560
4.
4. M. Dolev, M. Heiblum, V. Umansky, A. Stern, and D. Mahalu, Nature 452, 829 (2008).
http://dx.doi.org/10.1038/nature06855
5.
5. P. Simon, B. Braunecker, and D. Loss, Phys. Rev. B 77, 045108 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.045108
6.
6. B. Braunecker, P. Simon, and D. Loss, Phys. Rev. Lett. 102, 116403 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.116403
7.
7. B. Braunecker, P. Simon, and D. Loss, Phys. Rev. B 80, 165119 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.165119
8.
8. C. P. Scheller, T.-M. Liu, G. Barak, A. Yacoby, L. N. Pfeiffer, K. W. West, and D. M. Zumbühl, Phys. Rev. Lett. 112, 066801 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.066801
9.
9. J. M. Hergenrother, J. G. Lu, M. T. Tuominen, D. C. Ralph, and M. Tinkham, Phys. Rev. B 51, 9407 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.9407
10.
10. J. P. Pekola, V. F. Maisi, S. Kafanov, N. Chekurov, A. Kemppinen, Y. A. Pashkin, O. P. Saira, M. Möttönen, and J. S. Tsai, Phys. Rev. Lett. 105, 026803 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.026803
11.
11. J. M. Martinis, M. H. Devoret, and J. Clarke, Phys. Rev. B 35, 4682 (1987).
http://dx.doi.org/10.1103/PhysRevB.35.4682
12.
12. A. Fukushima, A. Sato, A. Iwasa, Y. Nakamura, T. Komatsuzaki, and Y. Sakamoto, IEEE Trans. Instrum. Meas. 46, 289 (1997).
http://dx.doi.org/10.1109/19.571834
13.
13. F. P. Milliken, J. R. Rozen, G. A. Keefe, and R. H. Koch, Rev. Sci. Instrum. 78, 024701 (2007).
http://dx.doi.org/10.1063/1.2431770
14.
14. A. Lukashenko and A. Ustinov, Rev. Sci. Instrum. 79, 014701 (2008).
http://dx.doi.org/10.1063/1.2827515
15.
15. D. Vion, P. F. Orfila, P. Joyez, D. Esteve, and M. H. Devoret, J. Appl. Phys. 77, 2519 (1995).
http://dx.doi.org/10.1063/1.358781
16.
16. H. Courtois, O. Buisson, J. Chaussy, and B. Pannetier, Rev. Sci. Instrum. 66, 3465 (1995).
http://dx.doi.org/10.1063/1.1146442
17.
17. H. le Sueur and P. Joyez, Rev. Sci. Instrum. 77, 115102 (2006).
http://dx.doi.org/10.1063/1.2370744
18.
18. L. Longobardi, D. A. Bennett, V. Patel, W. Chen, and J. E. Lukens, Rev. Sci. Instrum. 84, 014706 (2013).
http://dx.doi.org/10.1063/1.4789310
19.
19. A. B. Zorin, Rev. Sci. Instrum. 66, 4296 (1995).
http://dx.doi.org/10.1063/1.1145385
20.
20. D. C. Glattli, P. Jacques, A. Kumar, P. Pari, and L. Saminadayar, J. Appl. Phys. 81, 7350 (1997).
http://dx.doi.org/10.1063/1.365332
21.
21. L. Spietz, J. Teufel, and R. J. Schoelkopf, “A Twisted Pair Cryogenic Filter,” e-print arXiv:cond-mat/0601316v1 (2006).
22.
22. H. Bluhm and A. Moler, Rev. Sci. Instrum. 79, 014703 (2008).
http://dx.doi.org/10.1063/1.2835716
23.
23. I. Jin, A. Amar, and F. C. Wellstood, Appl. Phys. Lett. 70, 2186 (1997).
http://dx.doi.org/10.1063/1.119036
24.
24. D. H. Slichter, O. Naaman, and I. Siddiqi, Appl. Phys. Lett. 94, 192508 (2009).
http://dx.doi.org/10.1063/1.3133362
25.
25. K. Bladh, D. Gunnarsson, E. Hürfeld, S. Devi, C. Kristoffersson, B. Smålander, S. Pehrson, T. Claeson, P. Delsing, and M. Taslakov, Rev. Sci. Instrum. 74, 1323 (2003).
http://dx.doi.org/10.1063/1.1540721
26.
26. F. Pobell, Matter and Methods at Low Temperatures (Springer, Berlin, 1992).
27.
27. L. Casparis, M. Meschke, D. Maradan, A. C. Clark, C. P. Scheller, K. K. Schwarzwälder, J. P. Pekola, and D. M. Zumbühl, Rev. Sci. Instrum. 83, 083903 (2012).
http://dx.doi.org/10.1063/1.4744944
28.
28.Silver epoxy E4110, available at EPO–TEK.
29.
29.Emerson and Cuming Stycast 2850FT black epoxy.
30.
30.See supplementary material at http://dx.doi.org/10.1063/1.4880099 for a detailed description of the skin-effect filtering in a lossy transmission line model. [Supplementary Material]
31.
31.Discoidal ceramic capacitors with negligible temperature dependence, Pacific Aerospace and Electronics.
32.
32. M. A. Kastner, Rev. Mod. Phys. 64, 849 (1992).
http://dx.doi.org/10.1103/RevModPhys.64.849
33.
33. H. van Houten, C. W. J. Beenakker, and A. A. M. Staring, “ Coulomb blockade oscillations in semiconductor nanostructures,” in Single Charge Tunneling, NATO ASI Series Vol. 294, edited by H. Grabert and M. H. Devoret (Springer, New York, 1992).
34.
34. L. P. Kouwenhoven, C. M. Marcus, P. L. McEuen, S. Tarucha, R. M. Westervelt, and N. S. Wingreen, “ Electron transport in quantum dots,” in Proceedings of the NATO Advanced Study Institute on Mesoscopic Electron Transport (Springer, Dordrecht, Netherlands, 1996), Vol. 45, pp. 105214.
35.
35. I. Karakurt, V. J. Goldman, J. Liu, and A. Zaslavsky, Phys. Rev. Lett. 87, 146801 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.146801
36.
36. R. M. Potok, I. G. Rau, H. Shtrikman, Y. Oreg, and D. Goldhaber-Gordon, Nature 446, 167 (2007).
http://dx.doi.org/10.1038/nature05556
37.
37. A. Rossi, T. Ferrus, and D. A. Williams, Appl. Phys. Lett. 100, 133503 (2012).
http://dx.doi.org/10.1063/1.3697832
38.
38. A. Mavalankar, S. J. Chorley, J. Griffiths, G. A. C. Jones, I. Farrer, D. A. Ritchie, and C. G. Smith, Appl. Phys. Lett. 103, 133116 (2013).
http://dx.doi.org/10.1063/1.4823703
39.
39. P. Torresani, M. J. Martínez-Pérez, S. Gasparinetti, J. Renard, G. Biasiol, L. Sorba, F. Giazotto, and S. D. Franceschi, Phys. Rev. B 88, 245304 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.245304
40.
40. D. Maradan, L. Casparis, T.-M. Liu, D. E. F. Biesinger, C. P. Scheller, D. M. Zumbühl, J. Zimmerman, and A. C. Gossard, J. Low Temp. Phys. 175, 784 (2014).
http://dx.doi.org/10.1007/s10909-014-1169-6
41.
41.Heating element 1NcAc, 0.5 mm diameter, from Thermocoax SA, heat sunk at 4.2 K, at the 1 K pot, at the 50 mK plate, and the MC-plate.
42.
42. D. M. Zumbühl, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Phys. Rev. Lett. 96, 206802 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.206802
43.
43. M. Meschke, J. P. Pekola, F. Gay, R. E. Rapp, and H. Godfrin, J. Low Temp. Phys. 134, 1119 (2004).
http://dx.doi.org/10.1023/B:JOLT.0000016733.75220.5d
44.
44. J. P. Pekola, K. P. Hirvi, J. P. Kauppinen, and M. A. Paalanen, Phys. Rev. Lett. 73, 2903 (1994).
http://dx.doi.org/10.1103/PhysRevLett.73.2903
45.
45. A. V. Feshchenko, M. Meschke, D. Gunnarsson, M. Prunnila, L. Roschier, J. S. Penttilä, and J. P. Pekola, J. Low Temp. Phys. 173, 36 (2013).
http://dx.doi.org/10.1007/s10909-013-0874-x
46.
46. S. Farhangfar, K. P. Hirvi, J. P. Kauppinen, J. P. Pekola, J. J. Toppari, D. V. Averin, and A. N. Korotkov, J. Low Temp. Phys. 108, 191 (1997).
http://dx.doi.org/10.1007/BF02396821
47.
47. M. Meschke, J. Engert, D. Heyer, and J. P. Pekola, Int. J. Thermophys. 32, 1378 (2011).
http://dx.doi.org/10.1007/s10765-011-1033-8
http://aip.metastore.ingenta.com/content/aip/journal/apl/104/21/10.1063/1.4880099
Loading
/content/aip/journal/apl/104/21/10.1063/1.4880099
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/104/21/10.1063/1.4880099
2014-05-29
2016-12-04

Abstract

We present silver-epoxy filters combining excellent microwave attenuation with efficient wire thermalization, suitable for low temperature quantum transport experiments. Upon minimizing parasitic capacitances, the attenuation reaches ≥100 dB above ≈150 MHz and—when capacitors are added—already above ≈30 MHz. We measure the device electron temperature with a GaAs quantum dot and demonstrate excellent filter performance. Upon improving the sample holder and adding a second filtering stage, we obtain electron temperatures as low as 7.5 ± 0.2 mK in metallic Coulomb blockade thermometers.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/104/21/1.4880099.html;jsessionid=csOmSrRYWKfngL0YTLf4ZWnU.x-aip-live-06?itemId=/content/aip/journal/apl/104/21/10.1063/1.4880099&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/104/21/10.1063/1.4880099&pageURL=http://scitation.aip.org/content/aip/journal/apl/104/21/10.1063/1.4880099'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,