Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. Z. L. Wang and J. Song, Science 312, 242 (2006).
2. X. Chen, S. Xu, N. Yao, and Y. Shi, Nano Lett. 10, 2133 (2010).
3. Y. Qi, N. T. Jafferis, K. Lyons, C. M. Lee, H. Ahmad, and M. C. McAlpine, Nano Lett. 10, 524 (2010).
4. K. Park, M. Lee, Y. Liu, S. Moon, G. Hwang, G. Zhu, J. E. Kim, S. O. Kim, D. K. Kim, Z. L. Wang, and K. Lee, Adv. Mater. 24, 2999 (2012).
5. L. T. Parker, R. A. Coogle, and A. M. Howard, in Proceedings of 2013 IEEE International Conference on the Robotics and Automation, Karlsruhe, Germany, 6-10 May, 2013, pp. 10411046.
6. S. Kim, S. Pakzad, D. Culler, J. Demmel, G. Fenves, S. Glaser, and M. Turon, in Proceedings of 6th International Symposium on the Information Processing in Sensor Networks, Cambridge, USA, 25–27 April, 2007, pp. 254263.
7. R. Yang, Y. Qin, C. Li, G. Zhu, and Z. L. Wang, Nano Lett. 9, 1201 (2009).
8. D. C. Look, Mater. Sci. Eng., B 80, 383 (2001).
9. H. Morkoç and Ü. Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology (Wiley-VCH, Weinheim, 2009).
10. J. Liu, P. Fei, J. Song, X. Wang, C. Lao, R. Tummala, and Z. L. Wang, Nano Lett. 8, 328 (2008).
11. M. Choi, D. Choi, M. Jin, I. Kim, S. Kim, J. Choi, S. Y. Lee, J. M. Kim, and S. Kim, Adv. Mater. 21, 2185 (2009).
12. H. Kato, M. Sano, K. Miyamoto, and T. Yao, Jpn. J. Appl. Phys., Part 1 42, 1002 (2003).
13. K. Maeda, M. Sato, I. Niikura, and T. Fukuda, Semicond. Sci. Technol. 20, S49 (2005).
14. J. F. Rommeluere, L. Svob, F. Jomard, J. M. Arroyo, A. Lusson, V. Sallet, and Y. Marfaing, Appl. Phys. Lett. 83, 287 (2003).
15. J. Lu, Q. Liang, Y. Zhang, Z. Ye, and S. Fujita, J. Phys. D: Appl. Phys. 40, 3177 (2007).
16. S. Lim, S. Kwon, H. Kim, and J. Park, Appl. Phys. Lett. 91, 183517 (2007).
17.See supplementary material at for the details of the fabrication and the voltage measurement, and the supportive data. [Supplementary Material]
18. S. Y. Chung, S. Kim, J. H. Lee, K. Kim, S. W. Kim, C. Y. Kang, S. J. Yoon, and Y. S. Kim, Adv. Mater. 24, 6022 (2012).
19. A. Khan, M. Abbasi, M. Hussain, Z. H. Ibupoto, J. Wissting, O. Nur, and M. Willander, Appl. Phys. Lett. 101, 193506 (2012).
20. H. V. Wenckstern, E. M. Kaidashev, M. Lorenz, H. Hochmuth, G. Biehne, J. Lenzner, V. Gottschalch, R. Pickenhain, and M. Grundmann, Appl. Phys. Lett. 84, 79 (2004).
21. M. W. Allen, M. M. Alkaisi, and S. M. Durbin, Appl. Phys. Lett. 89, 103520 (2006).
22. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (Wiley, New Jersey, 2007).
23. Y. Gao and Z. L. Wang, Nano Lett. 9, 1103 (2009).
24. G. Mantini, Y. Gao, A. D'Amico, C. Falconi, and Z. L. Wang, Nano Res. 2, 624 (2009).
25. G. Romano, G. Mantini, A. D. Carlo, A. D'Amico, C. Falconi, and Z. L. Wang, Nanotechnology 22, 465401 (2011).
26. E. Lee, R. Zhang, and G. Yoon, J. Appl. Phys. 110, 074101 (2011).
27. D. A. Melnick, J. Chem. Phys. 26, 1136 (1957).
28. H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, Adv. Mater. 14, 158 (2002).<158::AID-ADMA158>3.0.CO;2-W

Data & Media loading...


Article metrics loading...



The free-carrier-modulated ZnO:N thin film-based flexible nanogenerators (NZTF-FNGs) are proposed and experimentally demonstrated. The suggested flexible nanogenerators (FNGs) are fabricated using N-doped ZnO thin films (NZTFs) as their piezoelectric active elements, which are deposited by a radio frequency magnetron sputtering technique with an NO reactive gas as an dopant source. Considerable numbers of N atoms are uniformly incorporated into NZTFs overall during their growth, which would enable them to significantly compensate the unintentional background free electron carriers both in the bulk and at the surface of ZnO thin films (ZTFs). This N-doping approach is found to remarkably enhance the performance of NZTF-FNGs, which shows output voltages that are almost two orders of magnitude higher than those of the conventionally grown ZnO thin film-based FNGs. This is believed to be a result of both substantial screening effect suppression in the ZTF bulk and more reliable Schottky barrier formation at the ZTF interfaces, which is all mainly caused by the N-compensatory doping process. Furthermore, the NZTF-FNGs fabricated are verified via charging tests to be suitable for micro-energy harvesting devices.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd