1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
MagnetoSperm: A microrobot that navigates using weak magnetic fields
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/104/22/10.1063/1.4880035
1.
1. B. J. Nelson, I. K. Kaliakatsos, and J. J. Abbott, Annu. Rev. Biomed. Eng. 12, 5585 (2010).
http://dx.doi.org/10.1146/annurev-bioeng-010510-103409
2.
2. J. Wang and W. Gao, ACS Nano 6, 57455751 (2012).
http://dx.doi.org/10.1021/nn3028997
3.
3. M. P. Kummer, J. J. Abbott, B. E. Kartochvil, R. Borer, A. Sengul, and B. J. Nelson, IEEE Trans. Rob. 26, 10061017 (2010).
http://dx.doi.org/10.1109/TRO.2010.2073030
4.
4. S. Sanchez, A. A. Solovev, S. Schulze, and O. G. Schmidt, Chem. Commun. 47, 698700 (2011).
http://dx.doi.org/10.1039/c0cc04126b
5.
5. L. Zhang, J. J. Abbott, L. Dong, B. E. Kratochvil, D. Bell, and B. J. Nelson, Appl. Phys. Lett. 94, 064107 (2009).
http://dx.doi.org/10.1063/1.3079655
6.
6. W. F. Paxton, K. C. Kistler, C. C. Olmeda, A. Sen, S. K. S. Angelo, Y. Cao, T. E. Mallouk, P. E. Lammert, and V. H. Crespi, J. Am. Chem. Soc. 126, 1342413431 (2004).
http://dx.doi.org/10.1021/ja047697z
7.
7. S. Fournier-Bidoz, A. C. Arsenault, I. Manners, and G. A. Ozin, Chem. Commun. 2005, 441443.
http://dx.doi.org/10.1039/B414896G
8.
8. J. R. Howse, A. J. Ryan, T. Gough, R. Vafabakhsh, and R. Golestanian, Phys. Rev. Lett. 99, 048102 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.048102
9.
9. Y. F. Mei, A. A. Solovev, S. Sanchez, and O. G. Schmidt, Chem. Soc. Rev. 40, 21092119 (2011).
http://dx.doi.org/10.1039/c0cs00078g
10.
10. S. Sanchez, A. A. Solovev, S. M. Harazim, and O. G. Schmidt, J. Am. Chem. Soc. 133, 701703 (2011).
http://dx.doi.org/10.1021/ja109627w
11.
11. R. Dreyfus, J. Baudry, M. L. Roper, M. Fermigier, H. A. Stone, and J. Bibette, Nature 437, 862865 (2005).
http://dx.doi.org/10.1038/nature04090
12.
12. A. A. Solovev, S. Sanchez, M. Pumera, Y. F. Mei, and O. G. Schmidt, Adv. Funct. Mater. 20, 24302435 (2010).
http://dx.doi.org/10.1002/adfm.200902376
13.
13. J. G. Gibbs and Y.-P. Zhao, Appl. Phys. Lett. 94, 163104 (2009).
http://dx.doi.org/10.1063/1.3122346
14.
14. I. S. M. Khalil, V. Magdanz, S. Sanchez, O. G. Schmidt, and S. Misra, Appl. Phys. Lett. 103, 172404 (2013).
http://dx.doi.org/10.1063/1.4826141
15.
15. E. Gillies, R. Cannon, R. Green, and A. Pacey, J. Fluid Mech. 625, 445 (2009).
http://dx.doi.org/10.1017/S0022112008005685
16.
16. E. L. Tony, S. Yu, and A. E. Hosoi, Phys. Fluids 18, 091701 (2006).
http://dx.doi.org/10.1063/1.2349585
17.
17. E. Lauga and T. Powers, Rep. Prog. Phys. 72, 096601 (2009).
http://dx.doi.org/10.1088/0034-4885/72/9/096601
18.
18. T. J. Ui, R. G. Hussey, and R. P. Roger, Phys. Fluids 27, 787 (1984).
http://dx.doi.org/10.1063/1.864706
19.
19. I. S. M. Khalil, V. Magdanz, S. Sanchez, O. G. Schmidt, and S. Misra, IEEE Trans. Rob. 30, 4958 (2013).
http://dx.doi.org/10.1109/TRO.2013.2281557
20.
20. M. Gomendio, A. F. Malo, J. Garde, and E. R. S. Roldan, Reproduction 134, 1929 (2007).
http://dx.doi.org/10.1530/REP-07-0143
http://aip.metastore.ingenta.com/content/aip/journal/apl/104/22/10.1063/1.4880035
Loading
/content/aip/journal/apl/104/22/10.1063/1.4880035
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/104/22/10.1063/1.4880035
2014-06-02
2014-07-29

Abstract

In this work, a propulsion system similar in motion to a sperm-cell is investigated. This system consists of a structure resembling a sperm-cell with a magnetic head and a flexible tail of 42 m and 280 m in length, respectively. The thickness, length, and width of this structure are 5.2 m, 322 m, and 42 m, respectively. The magnetic head includes a 200 nm-thick cobalt-nickel layer. The cobalt-nickel layer provides a dipole moment and allows the flexible structure to align along oscillating weak (less than 5 mT) magnetic field lines, and hence generates a propulsion thrust force that overcomes the drag force. The frequency response of this system shows that the propulsion mechanism allows for swimming at an average speed of 158 ± 32 m/s at alternating weak magnetic field of 45 Hz. In addition, we experimentally demonstrate controlled steering of the flexible structure towards reference positions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/104/22/1.4880035.html;jsessionid=fpalqdq638rol.x-aip-live-06?itemId=/content/aip/journal/apl/104/22/10.1063/1.4880035&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: MagnetoSperm: A microrobot that navigates using weak magnetic fields
http://aip.metastore.ingenta.com/content/aip/journal/apl/104/22/10.1063/1.4880035
10.1063/1.4880035
SEARCH_EXPAND_ITEM