1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Imaging and characterization of conducting ferroelectric domain walls by photoemission electron microscopy
Rent:
Rent this article for
Access full text Article
    + View Affiliations - Hide Affiliations
    Affiliations:
    1 Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
    2 Institut für Optik und Atomare Physik, TU Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
    3 Forschungszentrum Jülich Peter Grünberg Institute (PGI-6), Leo-Brandt-Strasse, 52425 Jülich, Germany
    4 CNRS, Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac, France
    5 4th Physics Institute and Research Center SCoPE, University of Suttgart, Pfaffenwaldring 57, 70659 Stuttgart, Germany
    6 Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
    7 Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA
    a) Author to whom correspondence should be addressed. Electronic mail: dennis.meier@mat.ethz.ch
    Appl. Phys. Lett. 104, 232904 (2014); http://dx.doi.org/10.1063/1.4879260
/content/aip/journal/apl/104/23/10.1063/1.4879260
1.
1. E. K. H. Salje, ChemPhysChem 11, 940 (2010).
http://dx.doi.org/10.1002/cphc.200900943
2.
2. E. K. H. Salje and H. Zhang, Phase Transitions 82, 452 (2009).
http://dx.doi.org/10.1080/01411590902936138
3.
3. H. Bea and P. Paruch, Nature Mater. 8, 168 (2009).
http://dx.doi.org/10.1038/nmat2393
4.
4. Y. S. Yang, J. Seidel, S. J. Byrnes, P. Shafer, C.-H. Yang, M. D. Rossell, P. Yu, Y.-H. Chu, J. F. Scott, J. W. Ager III, L. W. Martin, and R. Ramesh, Nat. Nanotechnol. 5, 143 (2010).
http://dx.doi.org/10.1038/nnano.2009.451
5.
5. T. Sluka, A. K. Tagantsev, D. Damjanovic, M. Gureev, and N. Setter, Nat. Commun. 3, 748 (2012).
http://dx.doi.org/10.1038/ncomms1751
6.
6. J. Seidel, L. W. Martin, Q. He, Q. Zhan, Y.-H. Chu, A. Rother, M. E. Hawkridge, P. Maksymowych, P. Yu, M. Gajek, N. Balke, S. V. Kalinin, S. Gemming, F. Wang, G. Catalan, J. F. Scott, N. A. Spaldin, J. Orenstein, and R. Ramesh, Nature Mater. 8, 229 (2009).
http://dx.doi.org/10.1038/nmat2373
7.
7. J. Guyonnet, I. Gaponenko, S. Gariglio, and P. Paruch, Adv. Mater. 23, 5377 (2011).
http://dx.doi.org/10.1002/adma.201102254
8.
8. S. Farokhipoor and B. Noheda, Phys. Rev. Lett. 107, 127601 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.127601
9.
9. D. Meier, J. Seidel, A. Cano, K. Delaney, Y. Kumagai, M. Mostovoy, N. A. Spaldin, R. Ramesh, and M. Fiebig, Nature Mater. 11, 284 (2012).
http://dx.doi.org/10.1038/nmat3249
10.
10. P. Maksymovych, A. N. Morozovska, P. Yu, E. A. Eliseev, Y.-H. Chu, R. Ramesh, A. P. Baddorf, and S. V. Kalinin, Nano Lett. 12, 209 (2012).
http://dx.doi.org/10.1021/nl203349b
11.
11. W. Wu, Y. Horibe, N. Lee, S.-W. Cheong, and J. R. Guest, Phys. Rev. Lett. 108, 077203 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.077203
12.
12. M. Schröder, A. Haußmann, A. Thiessen, E. Soergel, T. Woike, and L. M. Eng, Adv. Funct. Mater. 22, 3936 (2012).
http://dx.doi.org/10.1002/adfm.201201174
13.
13. T. Sluka, A. K. Tagantsev, P. Bednyakov, and N. Setter, Nat. Commun. 4, 1808 (2013).
http://dx.doi.org/10.1038/ncomms2839
14.
14. Q. He, C.-H. Yeh, J.-C. Yang, G. Singh-Bhalla, C.-W. Liang, P.-W. Chiu, G. Catalan, L. W. Martin, Y.-H. Chu, J. F. Scott, and R. Ramesh, Phys. Rev. Lett. 108, 067203 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.067203
15.
15. G. Catalan, J. Seidel, R. Ramesh, and J. F. Scott, Rev. Mod. Phys. 84, 119 (2012).
http://dx.doi.org/10.1103/RevModPhys.84.119
16.
16. B. Meyer and D. Vanderbilt, Phys. Rev. B 65, 104111 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.104111
17.
17. J. Padilla, W. Zhong, and D. Vanderbilt, Phys. Rev. B 53, R5969 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.R5969
18.
18. E. A. Eliseev, A. N. Morozovska, G. S. Svechnikov, V. Gopalan, and V. Y. Shur, Phys. Rev. B 83, 235313 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.235313
19.
19. M. Y. Gureev, A. K. Tagantsev, and N. Setter, Phys. Rev. B 83, 184104 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.184104
20.
20. E. B. Lochocki, S. Park, N. Lee, S.-W. Cheongm, and W. Wu, Appl. Phys. Lett. 99, 232901 (2011).
http://dx.doi.org/10.1063/1.3665255
21.
21. C.-L. Jia, S.-B. Mi, K. Urban, I. Vrejoiu, M. Alexe, and D. Hesse, Nature Mater. 7, 57 (2008).
http://dx.doi.org/10.1038/nmat2080
22.
22. M.-G. Han, Y. Zhu, L. Wu, T. Aoki, V. Volkov, X. Wang, S. C. Chae, Y. S. Oh, and S.-W. Cheong, Adv. Mater. 25, 2415 (2013).
http://dx.doi.org/10.1002/adma.201204766
23.
23. Q. Zhang, G. Tan, L. Gu, Y. Yao, C. Jin, Y. Wang, X. Duan, and R. Yu, Sci. Rep. 3, 2741 (2013).
http://dx.doi.org/10.1038/srep02741
24.
24. T. Matsumoto, R. Ishikawa, T. Tohei, H. Kimura, Q. Yao, H. Zhao, X. Wang, D. Chen, Z. Cheng, N. Shibata, and Y. Ikuhara, Nano Lett. 13, 4594 (2013).
http://dx.doi.org/10.1021/nl402158c
25.
25. V. V. Aristov, L. S. Kokhanchik, K.-P. Meyer, and H. Blumtritt, Phys. Status Solidi A 78, 229 (1983).
http://dx.doi.org/10.1002/pssa.2210780127
26.
26. V. V. Aristov, L. S. Kokhanchik, and Y. I. Voronovskii, Phys. Status Solidi A 86, 133 (1984).
http://dx.doi.org/10.1002/pssa.2210860113
27.
27. J. Li, H. X. Yang, H. F. Tian, C. Ma, S. Zhang, Y. G. Zhao, and J. Q. Li, Appl. Phys. Lett. 100, 152903 (2012).
http://dx.doi.org/10.1063/1.4704165
28.
28. E. Arenholz, G. van der Laan, A. Fraile-Rodríguez, P. Yu, Q. He, and R. Ramesh, Phys. Rev. B 82, 140103 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.140103
29.
29. I. Krug, N. Barrett, A. Petraru, A. Locatelli, T. O. Mentes, M. A. Niño, K. Rahmanizadeh, G. Bihlmayer, and C. M. Schneider, Appl. Phys. Lett. 97, 222903 (2010).
http://dx.doi.org/10.1063/1.3523359
30.
30. N. Barrett, J. E. Rault, J. L. Wang, C. Mathieu, A. Locatelli, T. O. Mentes, M. A. Niño, S. Fusil, M. Bibes, A. Barthélémy, D. Sando, W. Ren, S. Prosandeev, L. Bellaiche, B. Vilquin, A. Petraru, I. P. Krug, and C. M. Schneider, J. Appl. Phys. 113, 187217 (2013).
http://dx.doi.org/10.1063/1.4801968
31.
31. S. Cherifi, R. Hertel, S. Fusil, H. Béa, K. Bouzehouane, J. Allibe, M. Bibes, and A. Barthélémy, Phys. Status Solidi RRL 4, 22 (2010).
http://dx.doi.org/10.1002/pssr.200903297
32.
32. J. E. Rault, W. Ren, S. Prosandeev, S. Lisenkov, D. Sando, S. Fusil, M. Bibes, A. Barthélémy, L. Bellaiche, and N. Barrett, Phys. Rev. Lett. 109, 267601 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.267601
33.
33. G. A. Smolenskiĭ and I. E. Chupis, Sov. Phys. Usp. 25, 475 (1982).
http://dx.doi.org/10.1070/PU1982v025n07ABEH004570
34.
34. D. Meier, M. Lilienblum, P. Becker, L. Bohatý, N. A. Spaldin, R. Ramesh, and M. Fiebig, Phase Transitions 86, 33 (2013).
http://dx.doi.org/10.1080/01411594.2012.696116
35.
35. Y. Kumagai and N. A. Spaldin, Nat. Commun. 4, 1540 (2013).
http://dx.doi.org/10.1038/ncomms2545
36.
36. T. Choi, Y. Horibe, H. T. Yi, Y. J. Choi, Weida Wu, and S.-W. Cheong, Nature Mater. 9, 253258 (2010).
http://dx.doi.org/10.1038/nmat2632
37.
37. T. Jungk, Á. Hoffmann, M. Fiebig, and E. Soergel, Appl. Phys. Lett. 97, 012904 (2010).
http://dx.doi.org/10.1063/1.3460286
38.
38. R. M. Tromp, Y. Fujikawa, J. B. Hannon, A. W. Ellis, A. Berghaus, and O. Schaff, J. Phys.: Condens. Matter 21, 314007 (2009).
http://dx.doi.org/10.1088/0953-8984/21/31/314007
39.
39. Science of Microscopy, edited by P. W. Hawkes and J. C. Spence (Springer Science + Business Media, LLC, 2007).
http://aip.metastore.ingenta.com/content/aip/journal/apl/104/23/10.1063/1.4879260
Loading
/content/aip/journal/apl/104/23/10.1063/1.4879260
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/104/23/10.1063/1.4879260
2014-06-10
2014-08-21

Abstract

High-resolution X-ray photoemission electron microscopy (X-PEEM) is a well-established method for imaging ferroelectric domain structures. Here, we expand the scope of application of X-PEEM and demonstrate its capability for imaging and investigating domain walls in ferroelectrics with high spatial resolution. Using ErMnO as test system, we show that ferroelectric domain walls can be visualized based on photo-induced charging effects and local variations in their electronic conductance can be mapped by analyzing the energy distribution of photoelectrons. Our results open the door for non-destructive, contact-free, and element-specific studies of the electronic and chemical structure at domain walls in ferroelectrics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/104/23/1.4879260.html;jsessionid=eu2tfrakqbgc.x-aip-live-03?itemId=/content/aip/journal/apl/104/23/10.1063/1.4879260&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Imaging and characterization of conducting ferroelectric domain walls by photoemission electron microscopy
http://aip.metastore.ingenta.com/content/aip/journal/apl/104/23/10.1063/1.4879260
10.1063/1.4879260
SEARCH_EXPAND_ITEM