1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Anisotropy-enhanced giant reversible rotating magnetocaloric effect in HoMn2O5 single crystals
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/104/23/10.1063/1.4880818
1.
1. K. A. Gschneidner, Jr., V. K. Pecharsky, and A. O. Tsokol, Rep. Prog. Phys. 68, 1479 (2005).
http://dx.doi.org/10.1088/0034-4885/68/6/R04
2.
2. C. Zimm, A. Jastrab, A. Sternberg, V. Pecharsky, K. Gschneidner, Jr., M. Osborne, and I. Anderson, Adv. Cryog. Eng. 43, 1759 (1998).
http://dx.doi.org/10.1007/978-1-4757-9047-4_222
3.
3. C. R. H. Bahl, D. Velazquez, K. K. Nielsen, K. Engelbrecht, K. B. Andersen, R. Bulatova, and N. Pryds, Appl. Phys. Lett. 100, 121905 (2012).
http://dx.doi.org/10.1063/1.3695338
4.
4. M. H. Phan and S. C. Yu, J. Magn. Magn. Mater. 308, 325 (2007).
http://dx.doi.org/10.1016/j.jmmm.2006.07.025
5.
5. S. W. Cheong and M. Mostovoy, Nature Mater. 6, 13 (2007).
http://dx.doi.org/10.1038/nmat1804
6.
6. N. Hur, S. Park, P. A. Sharma, S. Guha, and S.-W. Cheong, Phys. Rev. Lett. 93, 107207 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.107207
7.
7. G. R. Blake, L. C. Chapon, P. G. Radaelli, S. Park, N. Hur, S.-W. Cheong, and J. Rodríguez-Carvajal, Phys. Rev. B. 71, 214402 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.214402
8.
8. D. Tzankov, V. Skumryev, M. Aroyo, R. Puzniak, M. D. Kuz'min, and M. Mikhov, Solid State Commun. 147, 212 (2008).
http://dx.doi.org/10.1016/j.ssc.2008.05.015
9.
9. B. Mihailova, M. M. Gospodinov, B. Güttler, F. Yen, A. P. Litvinchuk, and M. N. Iliev, Phys. Rev. B. 71, 172301 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.172301
10.
10. M. Balli, O. Sari, D. Fruchart, and J. Forchelet, Eur. Phys. J. 29, 00005 (2012).
11.
11. M. Balli, D. Fruchart, D. Gignoux, and R. Zach, Appl. Phys. Lett. 95, 072509 (2009).
http://dx.doi.org/10.1063/1.3194144
12.
12. G. J. Liu, J. R. Sun, J. Shen, B. Gao, H. W. Zhang, F. X. Hu, and B. G. Shen, Appl. Phys. Lett. 90, 032507 (2007).
http://dx.doi.org/10.1063/1.2425033
13.
13. A. Midya, P. Mandal, S. Das, S. Banerjee, L. S. S. Chandra, V. Ganesan, and S. R. Barman, Appl. Phys. Lett. 96, 142514 (2010).
http://dx.doi.org/10.1063/1.3386541
14.
14. K. A. Gschneidner, Jr., V. K. Pecharsky, A. O. Pecharsky, and C. B. Zimm, Mater. Sci. Forum 315–317, 69 (1999).
http://dx.doi.org/10.4028/www.scientific.net/MSF.315-317.69
15.
15. T. Samanta, I. Das, and S. Banerjee, Appl. Phys. Lett. 91, 152506 (2007).
http://dx.doi.org/10.1063/1.2798594
16.
16. W. J. Hu, J. Du, B. Li, Q. Zhang, and Z. D. Zhang, Appl. Phys. Lett. 92, 192505 (2008).
http://dx.doi.org/10.1063/1.2928233
17.
17. G. Heng, Z. Xiang-Qun, K. Ya-Jiao, J. Jin-Ling, L. Zhi-Xin, and C. Zhao-Hua, Chin. Phys. B. 22, 057502 (2013).
http://dx.doi.org/10.1088/1674-1056/22/5/057502
18.
18. J.-L. Jin, X.-Q. Zhang, G.-K. Li, Z.-H. Cheng, L. Zheng, and Y. Lu, Phys. Rev. B 83, 184431 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.184431
19.
19. J.-L. Jin, X.-Q. Zhang, H. Ge, and Z.-H. Cheng, Phys. Rev. B 85, 214426 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.214426
20.
20. S. A. Nikitin, K. P. Skokov, Yu. S. Koshkid'ko, Yu. G. Pastushenkov, and T. I. Ivanova, Phys. Rev. Lett 105, 137205 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.137205
21.
21. M. D. Kuz'min and A. M. Tishin, J. Phys. D 24, 2039 (1991).
http://dx.doi.org/10.1088/0022-3727/24/11/020
22.
22. K. Engelbrecht, D. Eriksen, C. R. H. Bahl, R. Bjørk, J. Geyti, J. A. Lozano, K. K. Nielsen, F. Saxild, A. Smith, and N. Pryds, Int. J. Refrig. 35, 1498 (2012).
http://dx.doi.org/10.1016/j.ijrefrig.2012.05.003
http://aip.metastore.ingenta.com/content/aip/journal/apl/104/23/10.1063/1.4880818
Loading
/content/aip/journal/apl/104/23/10.1063/1.4880818
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/104/23/10.1063/1.4880818
2014-06-10
2014-07-30

Abstract

Magnetic and magnetocaloric properties of HoMnO single crystals were investigated. HoMnO undergoes a large conventional magnetocaloric effect around 10 K. The magnetocaloric effect was found to present a giant anisotropy. Consequently, a large magnetocaloric effect (−ΔS,= 12.43 J/kg K for 7 T) can be obtained simply by rotating the single crystal HoMnO within the cb plane in constant magnetic field instead of moving it in and out of the magnetic field zone. This can open the way for the implementation of compact, simplified, and efficient rotary magnetic refrigerators.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/104/23/1.4880818.html;jsessionid=16u61ek63a1dm.x-aip-live-02?itemId=/content/aip/journal/apl/104/23/10.1063/1.4880818&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Anisotropy-enhanced giant reversible rotating magnetocaloric effect in HoMn2O5 single crystals
http://aip.metastore.ingenta.com/content/aip/journal/apl/104/23/10.1063/1.4880818
10.1063/1.4880818
SEARCH_EXPAND_ITEM