Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/104/23/10.1063/1.4882081
1.
1. P. Hering, J. P. Lay, and S. Stry, Laser in Environmental and Life Sciences: Modern Analytical Methods (Springer, Berlin Heidelberg, 2004), p. 223.
2.
2. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, Science 264, 553 (1994).
http://dx.doi.org/10.1126/science.264.5158.553
3.
3. J. R. Meyer, I. Vurgaftman, R. Q. Yang, and L. R. Ram-Mohan, Electron. Lett. 32, 45 (1996).
http://dx.doi.org/10.1049/el:19960064
4.
4. M. Kuznetsov, Semiconductor Disk Lasers: Physics and Technology, edited by O. G. Okhotnikov (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2010), p. 1.
5.
5. B. Rudin, A. Rutz, M. Hoffmann, D. J. Maas, A.-R. Bellancourt, E. Gini, T. Südmeyer, and U. Keller, Opt. Lett. 33, 2719 (2008).
http://dx.doi.org/10.1364/OL.33.002719
6.
6. B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, Electron. Lett. 48, 516 (2012).
http://dx.doi.org/10.1049/el.2012.0531
7.
7. M. Guina, A. Härkönen, V.-M. Korpijärvi, T. Leinonen, and S. Suomalainen, Adv. Opt. Technol. 2012, 265010 (2012).
http://dx.doi.org/10.1155/2012/265010
8.
8. S. Kaspar, M. Rattunde, T. Topper, R. Moser, S. Adler, C. Manz, K. Kohler, and J. Wagner, IEEE J. Sel. Top. Quantum Electron. 19, 1501908 (2013).
http://dx.doi.org/10.1109/JSTQE.2013.2244568
9.
9. R. Klann, T. Höfer, R. Buhleier, T. Elsaesser, and J. W. Tomm, J. Appl. Phys. 77, 277 (1995).
http://dx.doi.org/10.1063/1.359388
10.
10. I. Vurgaftman, C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, J. Abell, and J. R. Meyer, New J. Phys. 11, 125015 (2009).
http://dx.doi.org/10.1088/1367-2630/11/12/125015
11.
11. M. Eibelhuber, T. Schwarzl, S. Pichler, W. Heiss, and G. Springholz, Appl. Phys. Lett. 97, 061103 (2010).
http://dx.doi.org/10.1063/1.3478834
12.
12. M. Fill, A. Khiar, M. Rahim, F. Felder, and H. Zogg, J. Appl. Phys. 109, 093101 (2011).
http://dx.doi.org/10.1063/1.3579450
13.
13. A. Ishida, Y. Sugiyama, Y. Isaji, K. Kodama, Y. Takano, H. Sakata, M. Rahim, A. Khiar, M. Fill, F. Felder, and H. Zogg, Appl. Phys. Lett. 99, 121109 (2011).
http://dx.doi.org/10.1063/1.3634054
14.
14. M. Rahim, M. Fill, F. Felder, D. Chappuis, M. Corda, and H. Zogg, Appl. Phys. Lett. 95, 241107 (2009).
http://dx.doi.org/10.1063/1.3275792
15.
15. W. Heiss, H. Groiss, E. Kaufmann, G. Hesser, M. Böberl, G. Springholz, F. Schäffler, K. Koike, H. Harada, and M. Yano, Appl. Phys. Lett. 88, 192109 (2006).
http://dx.doi.org/10.1063/1.2202107
16.
16. H. Groiss, E. Kaufmann, G. Springholz, T. Schwarzl, G. Hesser, F. Schäffler, W. Heiss, K. Koike, T. Itakura, T. Hotei, M. Yano, and T. Wojtowicz, Appl. Phys. Lett. 91, 222106 (2007).
http://dx.doi.org/10.1063/1.2817951
17.
17. K. Koike, H. Harada, T. Itakura, M. Yano, W. Heiss, H. Groiss, E. Kaufmann, G. Hesser, and F. Schäffler, J. Cryst. Growth 301–302, 722 (2007).
http://dx.doi.org/10.1016/j.jcrysgro.2006.11.115
18.
18. H. A. Macleod, Thin-Film Optical Filters, 3rd ed. (Institute of Physics Publishing, Bristol and Philadelphia, 1986).
19.
19. H. Groiss, I. Daruka, K. Koike, M. Yano, G. Hesser, G. Springholz, N. Zakharov, P. Werner, and F. Schäffler, APL Mater. 2, 012105 (2014).
http://dx.doi.org/10.1063/1.4859775
20.
20. E. de Andrada e Silva, Phys. Rev. B 60, 8859 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.8859
21.
21. Y. H. Sun, L. J. Xu, B. Zhang, Q. F. Xu, R. Wang, N. Dai, and H. Z. Wu, Phys. Status Solidi A 206, 2606 (2009).
http://dx.doi.org/10.1002/pssa.200925129
22.
22. C. Chun-Feng, W. Hui-Zhen, S. Jian-Xiao, J. Shu-Qiang, Z. Wen-Hua, X. Yang, and Z. Jun-Fa, Chin. Phys. B 19, 077301 (2010).
http://dx.doi.org/10.1088/1674-1056/19/7/077301
23.
23. M. F. Khodr, P. J. McCann, and B. A. Mason, IEEE J. Quantum Electron. 32, 236 (1996).
http://dx.doi.org/10.1109/3.481871
24.
24. R. G. Bedford, G. Triplett, D. H. Tomich, S. W. Koch, J. Moloney, and J. Hader, J. Appl. Phys. 110, 073108 (2011).
http://dx.doi.org/10.1063/1.3646552
http://aip.metastore.ingenta.com/content/aip/journal/apl/104/23/10.1063/1.4882081
Loading
/content/aip/journal/apl/104/23/10.1063/1.4882081
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/104/23/10.1063/1.4882081
2014-06-09
2016-12-04

Abstract

Optical in-well pumped mid-infrared vertical external cavity surface emitting lasers based on PbTe quantum wells embedded in CdTe barriers are realized. In contrast to the usual ternary barrier materials of lead salt lasers such as PbEuTe of PbSrTe, the combination of narrow-gap PbTe with wide-gap CdTe offers an extremely large carrier confinement, preventing charge carrier leakage from the quantum wells. In addition, optical in-well pumping can be achieved with cost effective and readily available near infrared lasers. Free carrier absorption, which is a strong loss mechanism in the mid-infrared, is strongly reduced due to the insulating property of CdTe. Lasing is observed from 85 K to 300 K covering a wavelength range of 3.3–4.2 m. The best laser performance is achieved for quantum well thicknesses of 20 nm. At low temperature, the threshold power is around 100 mW and the output power more than 700 mW. The significance of various charge carrier loss mechanisms are analyzed by modeling the device performance. Although Auger losses are quite low in IV–VI semiconductors, an Auger coefficient of  = 3.5 × 10−27 cm6 s−1 was estimated for the laser structure, which is attributed to the large conduction band offset.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/104/23/1.4882081.html;jsessionid=EXZp85x7D8HDvJ3AepAeu9et.x-aip-live-02?itemId=/content/aip/journal/apl/104/23/10.1063/1.4882081&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/104/23/10.1063/1.4882081&pageURL=http://scitation.aip.org/content/aip/journal/apl/104/23/10.1063/1.4882081'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,