Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/104/23/10.1063/1.4883115
1.
1. G. Falci, D. Feinberg, and F. W. J. Hekking, Europhys. Lett. 54, 255 (2001).
http://dx.doi.org/10.1209/epl/i2001-00303-0
2.
2. S. Russo, M. Kroug, T. M. Klapwijk, and A. F. Morpurgo, Phys. Rev. Lett. 95, 027002 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.027002
3.
3. O. Y. Loh and H. D. Espinosa, Nat. Nanotechnol. 7, 283 (2012).
http://dx.doi.org/10.1038/nnano.2012.40
4.
4. H. G. Craighead, Science 290, 1532 (2000).
http://dx.doi.org/10.1126/science.290.5496.1532
5.
5. K. L. Ekinci and M. L. Roukes, Rev. Sci. Instrum. 76, 061101 (2005).
http://dx.doi.org/10.1063/1.1927327
6.
6. J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. McEuen, Science 315, 490 (2007).
http://dx.doi.org/10.1126/science.1136836
7.
7. J. D. Teufel, C. A. Regal, and K. W. Lehnert, New J. Phys. 10, 095002 (2008).
http://dx.doi.org/10.1088/1367-2630/10/9/095002
8.
8. C. Chen and J. Hone, Proc. IEEE 101, 1766 (2013).
http://dx.doi.org/10.1109/JPROC.2013.2253291
9.
9. N. Tombros, A. Veligura, J. Junesch, J. J. van den Berg, P. J. Zomer, M. Wojtaszek, I. J. V. Marun, H. T. Jonkman, and B. J. van Wees, J. Appl. Phys. 109, 093702 (2011).
http://dx.doi.org/10.1063/1.3579997
10.
10. N. Mizuno, B. Nielsen, and X. Du, Nat. Commun. 4, 2716 (2013);
http://dx.doi.org/10.1038/ncomms3716
10. T. Kohdkov, F. Withers, D. C. Hudson, M. F. Craciun, and S. Russo, Appl. Phys. Lett. 100, 013114 (2012).
http://dx.doi.org/10.1063/1.3675337
11.
11. Y. Harada, D. B. Haviland, P. Delsing, C. D. Chen, and T. Claeson, Appl. Phys. Lett. 65, 636 (1994).
http://dx.doi.org/10.1063/1.112255
12.
12. P. Dubos, P. Charlat, Th. Crozes, P. Paniez, and B. Pannetier, J. Vac. Sci. Technol., B 18, 122 (2000).
http://dx.doi.org/10.1116/1.591162
13.
13. N. Kim, K. Hansen, J. Toppari, T. Suppula, and J. Pekola, J. Vac. Sci. Technol., B 20, 386 (2002).
http://dx.doi.org/10.1116/1.1445168
14.
14. J. B. Oostinga, B. Sacepe, M. F. Craciun, and A. F. Morpurgo, Phys. Rev. B 81, 193408 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.193408
15.
15. F. J. Mori and J. P. Maita, Phys. Rev. 129, 1115 (1963).
http://dx.doi.org/10.1103/PhysRev.129.1115
16.
16. J. R. Gavaler, M. A. Janocko, and C. K. Jones, Appl. Phys. Lett. 21, 179 (1972).
http://dx.doi.org/10.1063/1.1654334
17.
17. V. A. Seleznev, M. A. Tarkhov, B. M. Voronov, I. I. Milostnaya, V. Yu. Lyakhno, A. S. Garbuz, M. Yu. Mikhailov, O. M. Zhigalina, and G. N. Goltsman, Supercond. Sci. Technol. 21, 115006 (2008).
http://dx.doi.org/10.1088/0953-2048/21/11/115006
18.
18. S. M. Deambrosis, G. Keppel, V. Ramazzo, C. Roncolato, R. G. Sharma, and V. Palmieri, Physica C 441, 108 (2006).
http://dx.doi.org/10.1016/j.physc.2006.03.047
19.
19. K. A. Huttel, G. A. Steele, B. Witkamp, M. Poot, L. P. Kouwenhoven, and H. S. J. van der Zant, Nano Lett. 9, 2547 (2009).
http://dx.doi.org/10.1021/nl900612h
http://aip.metastore.ingenta.com/content/aip/journal/apl/104/23/10.1063/1.4883115
Loading
/content/aip/journal/apl/104/23/10.1063/1.4883115
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/104/23/10.1063/1.4883115
2014-06-09
2016-12-04

Abstract

Suspended superconducting nanostructures of MoRe 50%/50% by weight are fabricated employing commonly used fabrication steps in micro- and nano-meter scale devices followed by wet-etching with Hydro-fluoric acid of a SiO sacrificial layer. Suspended superconducting channels as narrow as 50 nm and length have a critical temperature of , which can increase by 0.5 K upon annealing at . A detailed study of the dependence of the superconducting critical current and critical temperature upon annealing and in devices with different channel widths reveals that desorption of contaminants is responsible for the improved superconducting properties. These findings pave the way for the development of superconducting electromechanical devices using standard fabrication techniques.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/104/23/1.4883115.html;jsessionid=5VCw2E4yFSbyTZIVpPscZ1Vf.x-aip-live-02?itemId=/content/aip/journal/apl/104/23/10.1063/1.4883115&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/104/23/10.1063/1.4883115&pageURL=http://scitation.aip.org/content/aip/journal/apl/104/23/10.1063/1.4883115'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,