Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/104/24/10.1063/1.4883857
1.
1. J. Qin, R. Reif, Z. Zhi, S. Dziennis, and R. Wang, “ Hemodynamic and morphological vasculature response to a burn monitored using a combined dual-wavelength laser speckle and optical microangiography imaging system,” Biomed. Opt. Express 3(3 ), 455466 (2012).
http://dx.doi.org/10.1364/BOE.3.000455
2.
2. F. Pozzi, R. M. De La Rue, and M. Sorel, “ Dual wavelength InAlGaAs-InP laterally coupled distributed feedback laser,” IEEE Photonics Technol. Lett. 18(24 ), 25632565 (2006).
http://dx.doi.org/10.1109/LPT.2006.887205
3.
3. S. Ito, M. Suehiro, T. Hirata, and T. Hidaki, “ Two longitudinal-mode laser diodes,” IEEE Photonics Technol. Lett. 7, 959961 (1995).
http://dx.doi.org/10.1109/68.414668
4.
4. R. K. Price, V. B. Verma, K. E. Tobin, V. C. Elarde, and J. J. Coleman, “ Y-branch surface etched distributed Bragg reflector lasers at 850 nm for optical heterodyning,” IEEE Photonics Technol. Lett. 19(20 ), 16101612 (2007).
http://dx.doi.org/10.1109/LPT.2007.904914
5.
5. S. D. Roh, R. B. Swint, A. M. Jones, T. S. Yeoh, A. E. Huber, J. S. Hughs, and J. J. Coleman, “ Dual-wavelength asymmetric cladding InGaAs-GaAs ridge waveguide distributed Bragg reflector lasers,” IEEE Photonics Technol. Lett. 11(1 ), 1517 (1999).
http://dx.doi.org/10.1109/68.736375
6.
6. M. Sugawara, K. Mukai, Y. Nakata, K. Otsubo, and H. Ishikawa, “ Performance and physics of quantum dot lasers with self assembled columnar shaped and 1.3 μm emitting InGaAs quantum dots,” IEEE J. Sel. Top. Quantum Electron. 6(3 ), 462474 (2000).
http://dx.doi.org/10.1109/2944.865101
7.
7. I. O'Driscoll, P. Blood, and P. M. Smowton, “ Random population of quantum dots in InAs-GaAs laser structures,” IEEE J. Quantum Electron. 46, 525532 (2010).
http://dx.doi.org/10.1109/JQE.2009.2039198
8.
8. N. A. Naderi, F. Grillot, K. Yang, J. B. Wright, A. Gin, and L. F. Lester, “ Two color multi-section quantum dot distributed feedback laser,” Opt. Express 18(26 ), 2702827035 (2010).
http://dx.doi.org/10.1364/OE.18.027028
9.
9. N. S. Daghestani, M. A. Cataluna, G. Ross, and M. J. Rose, “ Compact dual-wavelength InAs/GaAs quantum dot external-cavity laser stabilized by a single volume Bragg grating,” IEEE Photonics Technol. Lett. 23(3 ), 176178 (2011).
http://dx.doi.org/10.1109/LPT.2010.2096206
10.
10. P. M. Smowton, J. Lutti, G. M. Lewis, A. B. Krysa, J. S. Roberts, and P. A. Houston, “ InP–GaInP quantum-dot lasers emitting between 690–750 nm,” IEEE J. Sel. Top. Quantum Electron. 11, 10351040 (2005).
http://dx.doi.org/10.1109/JSTQE.2005.853838
11.
11. S. N. Elliott, P. M. Smowton, A. B. Krysa, and R. Beanland, “ The effect of strained confinement layers in InP self-assembled quantum dot material,” Semicond. Sci. Technol. 27, 094008 (2012).
http://dx.doi.org/10.1088/0268-1242/27/9/094008
12.
12. P. Blood, G. M. Lewis, P. M. Smowton, H. D. Summers, J. D. Thomson, and J. Lutti, “ Characterisation of semiconductor laser gain media by the segmented contact method,” IEEE J. Sel. Top. Quantum Electron. 9(5 ), 12751282 (2003).
http://dx.doi.org/10.1109/JSTQE.2003.819472
13.
13. S. Shutts, P. M. Smowton, and A. B. Krysa, “ InP quantum dot lasers with temperature insensitive operating wavelength,” Appl. Phys. Lett. 103, 061106 (2013).
http://dx.doi.org/10.1063/1.4817732
http://aip.metastore.ingenta.com/content/aip/journal/apl/104/24/10.1063/1.4883857
Loading
/content/aip/journal/apl/104/24/10.1063/1.4883857
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/104/24/10.1063/1.4883857
2014-06-16
2016-10-01

Abstract

We have demonstrated a two-section dual-wavelength diode laser incorporating distributed Bragg reflectors, with a peak-wavelength separation of 62.5 nm at 300 K. Each lasing wavelength has a different temperature dependence, providing a difference-tuning of 0.11 nm/K. We discuss the mechanisms governing the light output of the two competing modes and explain how the short wavelength can be relatively insensitive to output changes at the longer wavelength. Starting from an initial condition when the output at both wavelengths are equal, a 500% increase in the long wavelength output causes the short wavelength output to fall by only 6%.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/104/24/1.4883857.html;jsessionid=3oapOjfnZrvqci1QLX5AWU06.x-aip-live-03?itemId=/content/aip/journal/apl/104/24/10.1063/1.4883857&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/104/24/10.1063/1.4883857&pageURL=http://scitation.aip.org/content/aip/journal/apl/104/24/10.1063/1.4883857'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,