1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
A flexible skin piloerection monitoring sensor
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/104/25/10.1063/1.4881888
1.
1. H. Ohashi, H. Tsutsumi, S. Tanabe, K. Kimura, H. Murakami, and K. Kiyohara, “ Subjective thermal comfort in the environment with spot cooling system,” in Proceedings of Clima 2007 WellBeing Indoors, edited by O. Seppaenen and J. Sateri (FINVAC, Helsinki, 2007).
2.
2. M. Oehl, F. W. Siebert, T. Tews, R. Höger, and H. Pfister, “ Improving human-machine interaction-a non Invasive approach to detect emotions in car drivers,” in Proceedings of the 14th International Conference on Human-Computer Interaction: Towards Mobile and Intelligent Interaction Environments, edited by J. A. Jacko (Springer, Berlin, 2011), pp. 577585.
3.
3. M. Benedek, B. Wilfling, R. Lukas-Wolfbauer, B. H. Katzur, and C. Kaernbach, Psychophysiology 47, 989 (2010).
http://dx.doi.org/10.1111/j.1469-8986.2010.01003.x
4.
4. W. Jänig, The Integrative Action of the Autonomic Nervous System (Cambridge University Press, Cambridge, 2006), p. 129.
5.
5. D. Craig, Musicae Scientiae 9, 273 (2005).
http://dx.doi.org/10.1177/102986490500900207
6.
6. M. Benedek and C. Kaernbach, Biol. Psychol. 86, 320 (2011).
http://dx.doi.org/10.1016/j.biopsycho.2010.12.012
7.
7. O. Grewe, R. Kopiez, and E. Altenmüller, Music Perception 27, 61 (2009).
http://dx.doi.org/10.1525/mp.2009.27.1.61
8.
8. C. Pang, G.-Y. Lee, T.-I. Kim, S. M. Kim, H. N. Kim, S.-H. Ahn, and K.-Y. Suh, Nature Mater. 11, 795 (2012).
http://dx.doi.org/10.1038/nmat3380
9.
9. G. Schwartz, B. C.-K. Tee, J. Mei, A. L. Appleton, D. H. Kim, H. Wang, and Z. Bao, Nat. Commun. 4, 1859 (2013).
http://dx.doi.org/10.1038/ncomms2832
10.
10. S. Noh, C. Yoon, E. Hyun, H. N. Yoon, T. J. Chung, K. S. Park, and H. C. Kim, Electron. Lett. 50, 143 (2014).
http://dx.doi.org/10.1049/el.2013.3715
11.
11. S. Gevorgian and H. Berg, “ Line capacitance and impedance of coplanar-strip waveguides on substrates with multiple dielectric layers,” in Proceedings of the 31st European Microwave Conference (CMP Europe Limited, London, 2001), pp. 14.
12.
12. P. Bingger, M. Zens, and P. Woias, Biomed. Microdevices 14, 573 (2012).
http://dx.doi.org/10.1007/s10544-012-9636-9
13.
13. D. Tahk, H. Lee, and D. Khang, Macromolecules 42, 7079 (2009).
http://dx.doi.org/10.1021/ma900137k
14.
14. D. Kim, N. Lu, R. Ma, Y. Kim, R. Kim, S. Wang, J. Wu, S. Won, H. Tao, A. Islam, K. Yu, T. Kim, R. Chowdhury, M. Ying, L. Xu, M. Li, H. Chung, H. Keum, M. McCormick, P. Liu, Y. Zhang, F. G. Omenetto, Y. Huang, T. Coleman, and J. A. Rogers, Science 333, 838 (2011).
http://dx.doi.org/10.1126/science.1206157
15.
15. A. Melikyan, L. Alloatti, A. Muslija, D. Hillerkuss, P. Schindler, J. Li, R. Palmer, D. Korn, S. Muehlbrandt, D. V. Thourhout, B. Chen, R. Dinu, M. Sommer, C. Koos, M. Kohl, W. Freude, and J. Leuthold, Nat. Photonics 8, 229 (2014).
http://dx.doi.org/10.1038/nphoton.2014.9
16.
16. X. Zhang, A. Hosseini, X. Lin, H. Subbaraman, and R. T. Chen, IEEE J. Sel. Top. Quantum Electron. 19, 196 (2013).
http://dx.doi.org/10.1109/JSTQE.2013.2268386
17.
17. S. Shoaee, J. Briscoe, J. R. Durrant, and S. Dunn, Adv. Mater. 26, 263 (2014).
http://dx.doi.org/10.1002/adma.201303304
18.
18. X. Hu, P. Krull, B. Graff, K. Dowling, J. A. Rogers, and W. J. Arora, Adv. Mater. 23, 2933 (2011).
http://dx.doi.org/10.1002/adma.201100144
19.
19. H.-J. Chung, M. S. Sulkin, J.-S. Kim, C. Goudeseune, H.-Y. Chao, J. W. Song, S. Y. Yang, Y.-Y. Hsu, R. Ghaffari, I. R. Efimov, and J. A. Rogers, Adv. Healthcare Mater. 3, 59 (2014).
http://dx.doi.org/10.1002/adhm.201300124
20.
20. G. Park, H.-J. Chung, K. Kim, S. A. Lim, J. Kim, Y.-S. Kim, Y. Liu, W.-H. Yeo, R.-H. Kim, S. S. Kim, J.-S. Kim, Y. H. Jung, C. Yee, J. A. Rogers, and K.-M. Lee, Adv. Healthcare Mater. 3(4), 515 (2014).
http://dx.doi.org/10.1002/adhm.201300220
21.
21.See supplementary material at http://dx.doi.org/10.1063/1.4881888 for additional simulation results, photos of fabricated sensor, illustration of experimental setup, and extended relationship between capacitance change and applied pressure. [Supplementary Material]
22.
22. N. Jeon, I. S. Choi, B. Xu, and G. M. Whitesides, Adv. Mater. 11, 946 (1999).
http://dx.doi.org/10.1002/(SICI)1521-4095(199908)11:11<946::AID-ADMA946>3.0.CO;2-9
23.
23. M.-Y. Cheng, X.-H. Huang, C.-W. Ma, and Y.-J. Yang, J. Micromech. Microeng. 19, 115001 (2009).
http://dx.doi.org/10.1088/0960-1317/19/11/115001
http://aip.metastore.ingenta.com/content/aip/journal/apl/104/25/10.1063/1.4881888
Loading
/content/aip/journal/apl/104/25/10.1063/1.4881888
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/104/25/10.1063/1.4881888
2014-06-24
2014-08-30

Abstract

We have designed, fabricated, and tested a capacitive-type flexible micro sensor for measurement of the human skin piloerection arisen from sudden emotional and environmental change. The present skin piloerection monitoring methods are limited in objective and quantitative measurement by physical disturbance stimulation to the skin due to bulky size and heavy weight of measuring devices. The proposed flexible skin piloerection monitoring sensor is composed of 3 3 spiral coplanar capacitor array using conductive polymer for having high capacitive density and thin enough thickness to be attached to human skin. The performance of the skin piloerection monitoring sensor is characterized using the artificial bump, representing human skin goosebump; thus, resulting in the sensitivity of −0.00252%/m and the nonlinearity of 25.9% for the artificial goosebump deformation in the range of 0–326 m. We also verified successive human skin piloerection having 3.5 s duration on the subject's dorsal forearms, thus resulting in the capacitance change of −6.2 fF and −9.2 fF for the piloerection intensity of 145 m and 194 m, respectively. It is demonstrated experimentally that the proposed sensor is capable to measure the human skin piloerection objectively and quantitatively, thereby suggesting the quantitative evaluation method of the qualitative human emotional status for cognitive human-machine interfaces applications.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/104/25/1.4881888.html;jsessionid=3dr5p5cu3hl7d.x-aip-live-02?itemId=/content/aip/journal/apl/104/25/10.1063/1.4881888&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A flexible skin piloerection monitoring sensor
http://aip.metastore.ingenta.com/content/aip/journal/apl/104/25/10.1063/1.4881888
10.1063/1.4881888
SEARCH_EXPAND_ITEM