Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. R. Gomez-Medina, N. Yamamoto, M. Nakano, and F. J. Garcia de Abajo, New J. Phys. 10, 105009 (2008).
2. E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, Nano Lett. 7(9), 2843 (2007).
3. T. Coenen, E. J. R. Vesseur, A. Polman, and A. F. Koenderink, Nano Lett. 11(9), 3779 (2011).
4. M. Kuttge, E. J. R. Vesseur, A. F. Koenderink, H. J. Lezec, H. A. Atwater, F. J. G. de Abajo, and A. Polman, Phys. Rev. B 79(11), 113405 (2009).
5. H. Niioka, T. Furukawa, M. Ichimiya, M. Ashida, T. Araki, and M. Hashimoto, Appl. Phys. Express 4(11), 112402 (2011).
6. D. R. Glenn, H. Zhang, N. Kasthuri, R. Schalek, P. K. Lo, A. S. Trifonov, H. Park, J. W. Lichtman, and R. L. Walsworth, Sci. Rep. 2, 865 (2012).
7. J. Goetze and U. Kempe, Mineral. Mag. 72(4), 909 (2008).
8. F. J. G. de Abajo, Rev. Mod. Phys. 82(1), 209 (2010).
9. T. Hu, B. D. Liu, F. Yuan, Z. E. Wang, N. Huang, G. F. Zhang, B. Dierre, N. Hirosaki, T. Sekiguchi, Y. Bando, D. Golberg, and X. Jiang, J. Nanosci. Nanotechnol. 13(8), 5744 (2013).
10. M. Liu, C. Meng, Z. H. Xue, X. Xiong, D. J. Shu, R. W. Peng, Q. Wu, Z. Hu, and M. Wang, Europhys. Lett. 104(1), 18004 (2013).
11. A. Gustafsson, J. Bolinsson, N. Skold, and L. Samuelson, Appl. Phys. Lett. 97(7), 072114 (2010).
12. F. Yuan, B. D. Liu, Z. E. Wang, B. Yang, Y. Yin, B. Dierre, T. Sekiguchi, G. F. Zhang, and X. Jiang, ACS Appl. Mater. Interfaces 5(22), 12066 (2013).
13. L. F. Zagonel, L. Rigutti, M. Tchernycheva, G. Jacopin, R. Songmuang, and M. Kociak, Nanotechnology 23(45), 455205 (2012).
14. A. C. Narvaez, I. G. C. Weppelman, R. J. Moerland, N. Liv, A. C. Zonnevylle, P. Kruit, and J. P. Hoogenboom, Opt. Express 21(24), 29968 (2013).
15. A. Gustafsson, K. Hillerich, M. E. Messing, K. Storm, K. A. Dick, K. Deppert, and J. Bolinsson, Nanotechnology 23(26), 265704 (2012).
16. S. Chen, M. Svedendahl, T. J. Antosiewicz, and M. Käll, ACS Nano 7(10), 8824 (2013).
17. J. Pan, K. He, Z. Chen, and Z. Wang, Opt. Express 18(16), 16722 (2010).
18. G. D. Martino, Y. Sonnefraud, S. Kéna-Cohen, M. Tame, S. K Özdemir, M. S. Kim, and S. A. Maier, Nano Lett. 12(5), 2504 (2012).
19. M. L. Juan, M. Righini, and R. Quidant, Nat. Photonics 5(6), 349 (2011).
20. M. van Lare, F. Lenzmann, M. A. Verschuuren, and A. Polman, Appl. Phys. Lett. 101(22), 221110 (2012).
21. J. Poplawsky and V. Dierolf, Microsc. Microanal. 18(6), 1263 (2012).
22. A. C. Zonnevylle, R. F. C. van Tol, N. Liv, A. C. Narvaez, A. P. J. Effting, P. Kruit, and J. P. Hoogenboom, J. Microsc. 252(1), 58 (2013).
23.See supplemental material at for further illustration of the CL radiative volume dependence on the primary electron energy.[Supplementary Material]
24. P. Chaturvedi, K. H. Hsu, A. Kumar, K. H. Fung, J. C. Mabon, and N. X. Fang, ACS Nano 3(10), 2965 (2009).
25. R. Sapienza, T. Coenen, J. Renger, M. Kuttge, N. F. van Hulst, and A. Polman, Nature Mater. 11(9), 781 (2012).

Data & Media loading...


Article metrics loading...



Cathodoluminescence (CL) microscopy allows optical characterization of nanostructures at high spatial resolution. At the nanoscale, a main challenge of the technique is related to the background CL generated within the sample substrate. Here, we implement confocal detection of the CL signal to minimize the background contribution to the measurement. Nano-phosphors were used as point sources to evaluate the filtering capabilities of our confocal CL system, obtaining an axial intensity profile with 2.7 m full width at half maximum for the central peak, in good correspondence with theoretical expectations. Considering the electron interaction volume, we found that the confocal filter becomes effective for electron energies above 20 keV, when using a 25 m pinhole (0.86 Airy units). To illustrate our approach, we present confocal CL imaging of gold nanowires and triangular shaped plates deposited on an indium-tin oxide covered glass substrate, comparing the images with those obtained in standard unfiltered CL detection. The results show that confocal CL microscopy is a valuable tool for the investigation of nanostructures on highly cathodoluminescent substrates, widely used in biological and optical applications.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd