1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Plasmonic gold nanoparticles modified titania nanotubes for antibacterial application
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/104/26/10.1063/1.4885401
1.
1. X. Chen, L. Liu, P. Y. Yu, and S. S. Mao, Science 331, 746 (2011).
http://dx.doi.org/10.1126/science.1200448
2.
2. M. Murdoch, G. I. N. Waterhouse, M. A. Nadeem, J. B. Metson, M. A. Keane, R. F. Howe, J. Llorca, and H. Idriss, Nat. Chem. 3, 489 (2011).
http://dx.doi.org/10.1038/nchem.1048
3.
3. I. Chung, B. Lee, J. He, R. P. H. Chang, and M. G. Kanatzidis, Nature 485, 486 (2012).
http://dx.doi.org/10.1038/nature11067
4.
4. Y.-Y. Song, F. Schmidt-Stein, S. Bauer, and P. Schmuki, J. Am. Chem. Soc. 131, 4230 (2009).
http://dx.doi.org/10.1021/ja810130h
5.
5. J. Park, S. Bauer, K. von der Mark, and P. Schmuki, Nano Lett. 7, 1686 (2007).
http://dx.doi.org/10.1021/nl070678d
6.
6. S. Oh, K. S. Brammer, Y. S. J. Li, D. Teng, A. J. Engler, S. Chien, and S. Jin, Proc. Natl. Acad. Sci. U.S.A. 106, 2130 (2009).
http://dx.doi.org/10.1073/pnas.0813200106
7.
7. P. Roy, S. Berger, and P. Schmuki, Angew. Chem. Int. Ed. 50, 2904 (2011).
http://dx.doi.org/10.1002/anie.201001374
8.
8. A. Kudo and Y. Miseki, Chem. Soc. Rev. 38, 253 (2009).
http://dx.doi.org/10.1039/b800489g
9.
9. S. T. Kochuveedu, Y. H. Jang, and D. H. Kim, Chem. Soc. Rev. 42, 8467 (2013).
http://dx.doi.org/10.1039/c3cs60043b
10.
10. G. V. Ramesh, S. Porel, and T. P. Radhakrishnan, Chem. Soc. Rev. 38, 2646 (2009).
http://dx.doi.org/10.1039/b815242j
11.
11. G. Walters and I. P. Parkin, J. Mater. Chem. 19, 574 (2009).
http://dx.doi.org/10.1039/b809646e
12.
12. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, Laser Photon. Rev. 4, 795 (2010).
http://dx.doi.org/10.1002/lpor.200900055
13.
13. E. C. Dreaden, A. M. Alkilany, X. Huang, C. J. Murphy, and M. A. El-Sayed, Chem. Soc. Rev. 41, 2740 (2012).
http://dx.doi.org/10.1039/c1cs15237h
14.
14. L. Visai, L. De Nardo, C. Punta, L. Melone, A. Cigada, M. Imbriani, and C. R. Arciola, Int. J. Artif. Organs 34, 929 (2011).
http://dx.doi.org/10.5301/ijao.5000050
15.
15. M. A. Henderson, Surf. Sci. Rep. 66, 185 (2011).
http://dx.doi.org/10.1016/j.surfrep.2011.01.001
16.
16. A. Kubacka, M. S. Diez, D. Rojo, R. Bargiela, S. Ciordia, I. Zapico, J. P. Albar, C. Barbas, V. A. P. Martins dos Santos, M. Fernandez-Garcia, and M. Ferrer, Sci. Rep. 4, 4134 (2014).
http://dx.doi.org/10.1038/srep04134
17.
17. Q. Li, Y. W. Li, Z. Liu, R. Xie, and J. K. Shang, J. Mater. Chem. 20, 1068 (2010).
http://dx.doi.org/10.1039/b917239d
18.
18. P. Wu, J. A. Imlay, and J. K. Shang, Biomaterials 31, 7526 (2010).
http://dx.doi.org/10.1016/j.biomaterials.2010.06.032
19.
19. H. W. Harris, M. Y. El-Naggar, O. Bretschger, M. J. Ward, M. F. Romine, A. Y. Obraztsova, and K. H. Nealson, Proc. Natl. Acad. Sci. U.S.A. 107, 326 (2010).
http://dx.doi.org/10.1073/pnas.0907468107
20.
20. G. Reguera, K. D. McCarthy, T. Mehta, J. S. Nicoll, M. T. Tuominen, and D. R. Lovley, Nature 435, 1098 (2005).
http://dx.doi.org/10.1038/nature03661
21.
21. D. R. Lovley, J. D. Coates, E. L. Blunt-Harris, E. J. P. Phillips, and J. C. Woodward, Nature 382, 445 (1996).
http://dx.doi.org/10.1038/382445a0
22.
22. W. Hou, Z. Liu, P. Pavaskar, W. H. Hung, and S. B. Cronin, J. Catal. 277, 149 (2011).
http://dx.doi.org/10.1016/j.jcat.2010.11.001
23.
23. Z. Zou, Q. Wang, X. Chen, and S. Qu, J. Appl. Phys. 105, 103114 (2009).
http://dx.doi.org/10.1063/1.3133240
24.
24. Y. Tang, Z. Jiang, Q. Tay, J. Deng, Y. Lai, D. Gong, Z. Dong, and Z. Chen, RSC Adv. 2, 9406 (2012).
http://dx.doi.org/10.1039/c2ra21300a
25.
25. X. Zhang, Y. L. Chen, R.-S. Liu, and D. P. Tsai, Rep. Prog. Phys. 76, 046401 (2013).
http://dx.doi.org/10.1088/0034-4885/76/4/046401
26.
26. H. B. Michaelson, J. Appl. Phys. 48, 4729 (1977).
http://dx.doi.org/10.1063/1.323539
27.
27. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles ( John Wiley & Sons, 2008).
28.
28. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
http://dx.doi.org/10.1103/PhysRevB.6.4370
29.
29. H. Bar, D. K. Bhui, G. P. Sahoo, P. Sarkar, S. P. De, and A. Misra, Colloids surf., A 339, 134 (2009).
http://dx.doi.org/10.1016/j.colsurfa.2009.02.008
30.
30. M. Maillard, S. Giorgio, and M.-P. Pileni, J. Phys. Chem. B 107, 2466 (2003).
http://dx.doi.org/10.1021/jp022357q
31.
31. K.-S. Lee and M. A. El-Sayed, J. Phys. Chem. B 110, 19220 (2006).
http://dx.doi.org/10.1021/jp062536y
32.
32. J. Li, G. Wang, H. Zhu, M. Zhang, X. Zheng, Z. Di, X. Liu, and X. Wang, Sci. Rep. 4, 4359 (2014).
http://dx.doi.org/10.1038/srep04359
33.
33. A. Agarwal, T. L. Weis, M. J. Schurr, N. G. Faith, C. J. Czuprynski, J. F. McAnulty, C. J. Murphy, and N. L. Abbott, Biomaterials 31, 680 (2010).
http://dx.doi.org/10.1016/j.biomaterials.2009.09.092
34.
34. S. Eckhardt, P. S. Brunetto, J. Gagnon, M. Priebe, B. Giese, and K. M. Fromm, Chem. Rev. 113, 4708 (2013).
http://dx.doi.org/10.1021/cr300288v
35.
35. R. S. Hartshorne, C. L. Reardon, D. Ross, J. Nuester, T. A. Clarke, A. J. Gates, P. C. Mills, J. K. Fredrickson, J. M. Zachara, L. Shi, A. S. Beliaev, M. J. Marshall, M. Tien, S. Brantley, J. N. Butt, and D. J. Richardson, Proc. Natl. Acad. Sci. U.S.A. 106, 22169 (2009).
http://dx.doi.org/10.1073/pnas.0900086106
36.
36. D. D. Eley and D. I. Spivey, Trans. Faraday Soc. 56, 1432 (1960).
http://dx.doi.org/10.1039/tf9605601432
37.
37. C. D. Vecitis, K. R. Zodrow, S. Kang, and M. Elimelech, ACS Nano 4, 5471 (2010).
http://dx.doi.org/10.1021/nn101558x
38.
38. Y. Tian and T. Tatsuma, J. Am. Chem. Soc. 127, 7632 (2005).
http://dx.doi.org/10.1021/ja042192u
39.
39.See supplementary material at http://dx.doi.org/10.1063/1.4885401 for the experimental details and additional data, including a table showing the data for the energy level positions of Au and TiO2, a scheme showing the sample fabrication procedures, a figure showing the XRD patterns and EDS spectra, and a figure showing the photoluminescence spectra.[Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/apl/104/26/10.1063/1.4885401
Loading
/content/aip/journal/apl/104/26/10.1063/1.4885401
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/104/26/10.1063/1.4885401
2014-07-01
2014-07-24

Abstract

Close-packed TiO nanotube arrays are prepared on metallic Ti surface by electrochemical anodization. Subsequently, by magnetron sputtering, Au nanoparticles are coated onto the top sidewall and tube inwall. The Au@TiO systems can effectively kill and in darkness due to the existence of Au nanoparticles. On the basis of classical optical theories, the antibacterial mechanism is proposed from the perspective of localized surface plasmon resonance. Respiratory electrons of bacterial membrane transfer to Au nanoparticles and then to TiO, which makes bacteria steadily lose electrons until death. This work provides insights for the better understanding and designing of noble metal nanoparticles-based plasmonic heterostructures for antibacterial application.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/104/26/1.4885401.html;jsessionid=1b1ywudwxits2.x-aip-live-06?itemId=/content/aip/journal/apl/104/26/10.1063/1.4885401&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Plasmonic gold nanoparticles modified titania nanotubes for antibacterial application
http://aip.metastore.ingenta.com/content/aip/journal/apl/104/26/10.1063/1.4885401
10.1063/1.4885401
SEARCH_EXPAND_ITEM