Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/104/26/10.1063/1.4886407
1.
1. M. P. J. Lavery, F. C. Speirits, S. M. Barnett, and M. J. Padgett, “ Detection of a spinning object using light's orbital angular momentum,” Science 341, 537540 (2013).
http://dx.doi.org/10.1126/science.1239936
2.
2. K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “ Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12, 36453649 (2012).
http://dx.doi.org/10.1021/nl301347j
3.
3. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “ Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545 (2013).
http://dx.doi.org/10.1126/science.1237861
4.
4. J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “ Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488496 (2012).
http://dx.doi.org/10.1038/nphoton.2012.138
5.
5. D. G. Grier, “ A revolution in optical manipulation,” Nature 424(6950), 810816 (2003).
http://dx.doi.org/10.1038/nature01935
6.
6. L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “ Controlled rotation of optically trapped microscopic particles,” Science 292, 912914 (2001).
http://dx.doi.org/10.1126/science.1058591
7.
7. M. R. Dennis, R. P. King, B. Jack, K. O'Holleran, and M. J. Padgett, “ Isolated optical vortex knots,” Nat. Phys. 6, 118121 (2010).
http://dx.doi.org/10.1038/nphys1504
8.
8. M. Watabe, G. Juman, K. Miyamoto, and T. Omatsu, “ Light induced conch-shaped relief in an azo-polymer film,” Scientific Reports 4, 4281 (2014).
http://dx.doi.org/10.1038/srep04281
9.
9. T. Omatsu, K. Chujo, K. Miyamoto, M. Okida, K. Nakamura, N. Aoki, and R. Morita, “ Metal microneedle fabrication using twisted light with spin,” Opt. Express 18, 1796717973 (2010).
http://dx.doi.org/10.1364/OE.18.017967
10.
10. K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “ Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110, 143603 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.143603
11.
11. S. Bretschneider, C. Eggeling, and S. W. Hell, “ Breaking the diffraction barrier in fluorescence microscopy by optical shelving,” Phys. Rev. Lett. 98(21), 218103 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.218103
12.
12. S. Berning, K. I. Willig, H. Steffens, P. Dibaj, and S. W. Hell, “ Nanoscopy in a living mouse brain,” Science 335(6068), 551 (2013).
http://dx.doi.org/10.1126/science.1215369
13.
13. T. Watanabe, Y. Iketaki, T. Omatsu, K. Yamamoto, M. Sakai, and M. Fujii, “ Two-point-separation in super-resolution fluorescence microscope based on up-conversion fluorescence depletion technique,” Opt. Express 11, 32713276 (2003).
http://dx.doi.org/10.1364/OE.11.003271
14.
14. B. Ferguson and X. C. Zhang, “ Materials for terahertz science and technology,” Nat. Mater. 1, 2633 (2002).
http://dx.doi.org/10.1038/nmat708
15.
15. A. G. Markez, A. Roitberg, and E. J. Heilweil, “ Pulsed terahertz spectroscopy of DNA, bovine serum albumin (BSA) and collagen between 0.1 and 2.0 terahertz,” Chem. Phys. Lett. 320, 4248 (2000).
http://dx.doi.org/10.1016/S0009-2614(00)00227-X
16.
16. H. T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “ Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295298 (2008).
http://dx.doi.org/10.1038/nphoton.2008.52
17.
17. S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “ Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102, 023901 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.023901
18.
18. S. Ohno, A. Hamano, K. Miyamoto, C. Suzuki, and H. Ito, “ Surface mapping of carrier density in a GaN wafer using a frequency-agile THz source,” J. Eur. Opt. Soc. Rapid Publ. 4, 09012 (2009).
http://dx.doi.org/10.2971/jeos.2009.09012
19.
19. S. Ohno, K. Miyamoto, H. Minamide, and H. Ito, “ New method to determine the refractive index and the absorption coefficient of organic nonlinear crystals in the ultra-wideband THz region,” Opt. Express 18, 1730617312 (2010).
http://dx.doi.org/10.1364/OE.18.017306
20.
20. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “ Nondestructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11, 25492554 (2003).
http://dx.doi.org/10.1364/OE.11.002549
21.
21. A. R. Sanchez and X. C. Zhang, “ Terahertz science and technology trends,” IEEE J. Sel. Top. Quantum Electron. 14, 260269 (2008).
http://dx.doi.org/10.1109/JSTQE.2007.913959
22.
22. J. He, X. Wang, D. Hu, J. Ye, S. Feng, Q. Kan, and Y. Zhang, “ Generation and evolution of the terahertz vortex beam,” Opt. Express 21, 2023020239 (2013).
http://dx.doi.org/10.1364/OE.21.020230
23.
23. M. A. Ordal, R. J. Bell, R. W. Alexander, Jr., L. L. Long, and M. R. Querry, “ Optical properties of Au, Ni, and Pb at submillimeter wavelength,” Appl. Opt. 26, 744752 (1987).
http://dx.doi.org/10.1364/AO.26.000744
24.
24. P. Vaity, J. Banerji, and R. P. Singh, “ Measuring the topological charge of an optical vortex by using a tilted convex lens,” Phys. Lett. A 377, 11541156 (2013).
http://dx.doi.org/10.1016/j.physleta.2013.02.030
25.
25. J. Hamazaki, Y. Mineta, K. Oka, and R. Morita, “ Direct observation of Gouy phase shift in a propagating optical vortex,” Opt. Express 14, 83828392 (2006).
http://dx.doi.org/10.1364/OE.14.008382
26.
26. Y.-S. Lee, Principles of Terahertz Science and Technology ( Springer, New York, 2009), p. 162.
27.
27. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “ Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321327 (1994).
http://dx.doi.org/10.1016/0030-4018(94)90638-6
28.
28. K. Nawata, M. Okida, K. Furuki, K. Miyamoto, and T. Omatsu, “ Sub-100 W picosecond output from a phase-conjugate Nd:YVO4 bounce amplifier,” Opt. Express 17, 2081620823 (2009).
http://dx.doi.org/10.1364/OE.17.020816
http://aip.metastore.ingenta.com/content/aip/journal/apl/104/26/10.1063/1.4886407
Loading
/content/aip/journal/apl/104/26/10.1063/1.4886407
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/104/26/10.1063/1.4886407
2014-07-01
2016-12-08

Abstract

A terahertz (THz) spiral phase plate with high transmission (>90% after Fresnel correction) and low dispersion has been developed based on the Tsurupica olefin polymer. Direct observations of the topological charge (both magnitude and sign) of a THz vortex beam are performed by using a THz camera with tilted lens focusing and radial defect introduction. The vortex outputs with a topological charge of ±1 (or ±2) are obtained at a frequency of 2 (or 4) THz.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/104/26/1.4886407.html;jsessionid=jqZdS-BzNkdlWNPg_IZCV0eE.x-aip-live-02?itemId=/content/aip/journal/apl/104/26/10.1063/1.4886407&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/104/26/10.1063/1.4886407&pageURL=http://scitation.aip.org/content/aip/journal/apl/104/26/10.1063/1.4886407'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,