Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979).
2. E. Esarey, C. B. Schroeder, and W. P. Leemans, Rev. Mod. Phys. 81, 1229 (2009).
3. D. A. Jaroszynski, R. Bingham, E. Brunetti, B. Ersfeld, J. Gallacher, B. van der Geer, R. Issac, S. P. Jamison, D. Jones, M. de Loos, A. Lyachev, V. Pavlov, A. Reitsma, Y. Saveliev, G. Vieux, and S. M. Wiggins, Philos. Trans. R. Soc., A 364, 689 (2006).
4. F. Gruener, S. Becker, U. Schramm, T. Eichner, M. Fuchs, R. Weingartner, D. Habs, J. Meyer-ter-Vehn, M. Geissler, M. Ferrario, L. Serafini, B. van der Geer, H. Backe, W. Lauth, and S. Reiche, Appl. Phys. B 86, 431 (2007).
5. C. B. Schroeder, W. M. Fawley, F. Gruener, M. Bakeman, K. Nakamura, K. E. Robinson, Cs. Toth, E. Esarey, and W. P. Leemans, AIP Conf. Proc. 1086, 637 (2009).
6. H.-P. Schlenvoigt, K. Haupt, A. Debus, F. Budde, O. Jäckel, S. Pfotenhauer, H. Schwoerer, E. G. Rohwer, J. G. Gallacher, E. Brunetti, R. P. Shanks, S. M. Wiggins, and D. A. Jaroszynski, Nat. Phys. 4, 130 (2008).
7. M. Fuchs, R. Weingartner, A. Popp, Zs. Major, S. Becker, J. Osterhoff, I. Cortrie, B. Zeitler, R. Hoerlein, G. D. Tsakiris, U. Schramm, T. P. Rowlands-Rees, S. M. Hooker, D. Habs, F. Krausz, S. Karsch, and F. Gruener, Nat. Phys. 5, 826 (2009).
8. P. Rebernik Ribic and G. Margaritondo, J. Phys. D: Appl. Phys. 45, 213001 (2012).
9. B. W. J. McNeil and N. R. Thompson, Nat. Photonics 4, 814 (2010).
10. G. C. Walker, W. Jarzeba, T. J. Kang, A. E. Johnson, and P. E. Barbara, J. Opt. Soc. Am. B 7, 1521 (1990).
11. T. Kobayashi and Y. Kida, Phys. Chem. Chem. Phys. 14, 6200 (2012).
12. A. H. Zewail, J. Phys. Chem. A 104, 5660 (2000).
13. V. Sundström, Phys. Chem. 59, 53 (2008).
14. S. B. van der Geer, O. J. Luiten, M. J. de Loos, G. Poeplau, and U. van Rienen, “ 3D space-charge model for GPT simulations of high brightness electron bunches,” in Institute of Physics Conference Series No. 175 ( Institute of Physics, Bristol, UK, 2005), p. 101.
15. M. Gullans, G. Penn, J. S. Wurtele, and M. Zolotorev, Phys. Rev. Spec. Top. - Accel. Beams 11, 060701 (2008).
16. A. J. W. Reitsma, R. A. Cairns, R. Bingham, and D. A. Jaroszynski, Phys. Rev. Lett. 94, 085004 (2005).
17. T. Eichner, F. Gruener, S. Becker, M. Fuchs, D. Habs, R. Weingartner, U. Schramm, H. Backe, P. Kunz, and W. Lauth, Phys. Rev. Spec. Top. - Accel. Beams 10, 082401 (2007).
18. M. P. Anania, D. Clark, S. B. van der Geer, M. J. de Loos, R. Isaac, A. J. W. Reitsma, G. H. Welsh, S. M. Wiggins, and D. A. Jaroszynski, Proc. SPIE 7359, 735916 (2009).
19. M. R. Islam, E. Brunetti, R. P. Shanks, B. Ersfeld, R. C. Issac, S. Cipiccia, M. P. Anania, G. H. Welsh, S. M. Wiggins, A. Noble, R. A. Cairns, G. Raj, and D. A. Jaroszynski, “Near-threshold electron injection in the laser-plasma wakefield accelerator leading to femtosecond bunches,” Nature Physics (unpublished).
20. O. Lundh, J. Lim, C. Rechatin, L. Ammoura, A. Ben-Ismaïl, X. Davoine, G. Gallot, J.-P. Goddet, E. Lefebvre, V. Malka, and J. Faure, Nat. Phys. 7, 219 (2011).
21. S. M. Wiggins, R. C. Issac, G. H. Welsh, E. Brunetti, R. P. Shanks, M. P. Anania, S. Cipiccia, G. G. Manahan, C. Aniculaesei, B. Ersfeld, M. R. Islam, R. T. L. Burgess, G. Vieux, W. A. Gillespie, A. M. MacLeod, S. B. van der Geer, M. J. de Loos, and D. A. Jaroszynski, Plasma Phys. Controlled Fusion 52, 124032 (2010).
22. B. J. A. Shepherd and J. A. Clarke, Nucl. Instrum. Methods Phys. Res., Sect. A 654, 8 (2011).
23. J. G. Gallacher, M. P. Anania, E. Brunetti, F. Budde, A. Debus, B. Ersfeld, K. Haupt, M. R. Islam, O. Jaeckel, S. Pfotenhauer, A. J. W. Reitsma, E. G. Rohwer, H.-P. Schlenvoigt, H. Schwoerer, R. P. Shanks, S. M. Wiggins, and D. A. Jaroszynski, Phys. Plasmas 16, 093102 (2009).
24. N. D. Powers, I. Ghebregziabher, G. Golovin, C. Liu, S. Chen, S. Banerjee, J. Zhang, and D. P. Umstadter, Nat. Photonics 8, 28 (2014).
25. Z. He, J. A. Nees, B. Hou, B. Beaurepaire, V. Malka, K. M. Krushelnick, J. Faure, and A. G. R. Thomas, Proc. SPIE 8779, 877905 (2013).
26. G. Mourou, B. Brocklesby, T. Tajima, and J. Limpert, Nat. Photonics 7, 258 (2013).
27. B. W. J. McNeil, G. R. M. Robb, and D. A. Jaroszynski, Opt. Commun. 165, 65 (1999).
28. D. A. Jaroszynski, R. J. Bakker, A. F. G. van der Meer, D. Oepts, and P. W. Amersfoort, Phys. Rev. Lett. 71, 3798 (1993).
29. S. M. Wiggins, D. A. Jaroszynski, B. W. J. McNeil, G. R. M. Robb, P. Aitken, A. D. R. Phelps, A. W. Cross, K. Ronald, N. S. Ginzburg, V. G. Shpak, M. I. Yalandin, S. A. Shunailov, and M. R. Ulmaskulov, Phys. Rev. Lett. 84, 2393 (2000).
30. C. Lin, J. van Tilborg, K. Nakamura, A. J. Gonsalves, N. H. Matlis, T. Sokollik, S. Shiraishi, J. Osterhoff, C. Benedetti, C. B. Schroeder, Cs. Toth, E. Esarey, and W. P. Leemans, Phys. Rev. Lett. 108, 094801 (2012).

Data & Media loading...


Article metrics loading...



Narrow band undulator radiation tuneable over the wavelength range of 150–260 nm has been produced by short electron bunches from a 2 mm long laser plasma wakefield accelerator based on a 20 TW femtosecond laser system. The number of photons measured is up to 9 × 106 per shot for a 100 period undulator, with a mean peak brilliance of 1 × 1018 photons/s/mrad2/mm2/0.1% bandwidth. Simulations estimate that the driving electron bunch r.m.s. duration is as short as 3 fs when the electron beam has energy of 120–130 MeV with the radiation pulse duration in the range of 50–100 fs.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd