1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/104/3/10.1063/1.4862207
1.
1. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, Phys. Rev. Lett. 85, 290 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.290
2.
2. E. Knill, R. Laflamme, and G. J. Milburn, Nature 409, 46 (2001).
http://dx.doi.org/10.1038/35051009
3.
3. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. Milburn, Rev. Mod. Phys. 79, 135 (2007).
http://dx.doi.org/10.1103/RevModPhys.79.135
4.
4. T. Jennewein, M. Barbieri, and A. White, J. Mod. Opt. 58, 276 (2011).
http://dx.doi.org/10.1080/09500340.2010.546894
5.
5. J. P. Hadden, J. P. Harrison, A. C. Stanley-Clarke, L. Marseglia, Y.-L. D. Ho, B. R. Patton, J. L. O'Brien, and J. G. Rarity, Appl. Phys. Lett. 97, 241901 (2010).
http://dx.doi.org/10.1063/1.3519847
6.
6. P. Siyushev, F. Kaiser, V. Jacques, I. Gerhardt, S. Bischof, H. Fedder, J. Dodson, M. Markham, D. Twitchen, F. Jelezko, and J. Wrachtrup, Appl. Phys. Lett. 97, 241902 (2010).
http://dx.doi.org/10.1063/1.3519849
7.
7. L. Marseglia, J. P. Hadden, A. C. Stanley-Clarke, J. P. Harrison, B. Patton, Y.-L. D. Ho, B. Naydenov, F. Jelezko, J. Meijer, P. R. Dolan et al., Appl. Phys. Lett. 98, 133107 (2011).
http://dx.doi.org/10.1063/1.3573870
8.
8. M. Babinec, B. M. Hausmann, M. Khan, Y. Zhang, J. Maze, P. R. Hemmer, and M. Loncar, Nat. Nanotechnol. 5, 195 (2010).
http://dx.doi.org/10.1038/nnano.2010.6
9.
9. K.-M. C. Fu, C. Santori, P. E. Barclay, I. Aharonovich, S. Prawer, N. Meyer, A. M. Holm, and R. G. Beausoleil, Appl. Phys. Lett. 93, 234107 (2008).
http://dx.doi.org/10.1063/1.3045950
10.
10. P. Domokos, P. Horak, and H. Ritsch, Phys. Rev. A 65, 033832 (2002).
http://dx.doi.org/10.1103/PhysRevA.65.033832
11.
11. Q. Quan, I. Bulu, and M. Loncar, Phys. Rev. A 80, 011810R (2009).
http://dx.doi.org/10.1103/PhysRevA.80.011810
12.
12. A. Stiebeiner, R. Garcia-Fernandez, and A. Rauschenbeutel, Opt. Express 18, 22677 (2010).
http://dx.doi.org/10.1364/OE.18.022677
13.
13. V. V. Klimov and M. Ducloy, Phys. Rev. A 69, 013812 (2004).
http://dx.doi.org/10.1103/PhysRevA.69.013812
14.
14. F. L. Kien, S. D. Gupta, V. I. Balykin, and K. Hakuta, Phys. Rev. A 72, 032509 (2005).
http://dx.doi.org/10.1103/PhysRevA.72.032509
15.
15. F. L. Kien and K. Hakuta, Phys. Rev. A 80, 053826 (2009).
http://dx.doi.org/10.1103/PhysRevA.80.053826
16.
16. C. Wuttke, M. Becker, S. Brueckner, M. Rothhardt, and A. Rauschenbeutel, Opt. Lett. 37, 1949 (2012).
http://dx.doi.org/10.1364/OL.37.001949
17.
17. M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, and S. Takeuchi, Nano Lett. 11, 4362 (2011).
http://dx.doi.org/10.1021/nl2024867
18.
18. T. Schroeder, M. Fujiwara, T. Noda, H. Zhao, O. Benson, and S. Takeuchi, Opt. Express 20, 10490 (2012).
http://dx.doi.org/10.1364/OE.20.010490
19.
19. R. Yalla, F. L. Kien, M. Morinaga, and K. Hakuta, Phys. Rev. Lett. 109, 063602 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.063602
20.
20. R. Yalla, K. P. Nayak, and K. Hakuta, Opt. Express 20, 2932 (2012).
http://dx.doi.org/10.1364/OE.20.002932
21.
21. A. Stiebeiner, O. Rehband, R. Garcia-Fernandez, and A. Rauschenbeutel, Opt. Express 17, 21704 (2009).
http://dx.doi.org/10.1364/OE.17.021704
22.
22. K. P. Nayak, P. N. Morinaga, F. L. Kien, V. I. Balykin, and K. Hakuta, Opt. Express 15, 5431 (2007).
http://dx.doi.org/10.1364/OE.15.005431
23.
23. E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, Phys. Rev. Lett. 104, 203603 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.203603
24.
24. F. Ciccarello, M. Paternostro, S. Bose, D. E. Browne, G. M. Palma, and M. Zarcone, Phys. Rev. A 82, 030302R (2010).
http://dx.doi.org/10.1103/PhysRevA.82.030302
25.
25. F. Warken, Ph.D. dissertation, University of Bonn, 2007.
26.
26. F. L. Kien, J. Q. Liang, K. Hakuta, and V. I. Balykin, Opt. Commun. 242, 445 (2004).
http://dx.doi.org/10.1016/j.optcom.2004.08.044
27.
27. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, Comput. Phys. Commun. 181, 687 (2010).
http://dx.doi.org/10.1016/j.cpc.2009.11.008
28.
28. A. W. Schell, G. Kewes, T. Schroeder, J. Wolters, T. Aichele, and O. Benson, Rev. Sci. Instrum. 82, 073709 (2011).
http://dx.doi.org/10.1063/1.3615629
29.
29.Two different samples of diamond nano-crystals were used. For pick and place measurements untreated and chemically oxidized diamond nano-crystals were employed, whereas for coupling to the TOF an untreated sample from Microdiamant was used.
30.
30. C. Wang, Ph.D. dissertation, University of Munich, 2007.
31.
31.See supplementary material at http://dx.doi.org/10.1063/1.4862207 for polarization dependent excitation measurements and numerical FDTD simulations. [Supplementary Material]
32.
32. A. Mohtashami and A. F. Koenderink, New J. Phys. 15, 043017 (2013).
http://dx.doi.org/10.1088/1367-2630/15/4/043017
33.
33. M. Agio and V. Sandoghdar, Physica B 407, 4086 (2012).
http://dx.doi.org/10.1016/j.physb.2011.11.050
34.
34. M. Pototschnig, Y. Chassagneux, J. Hwang, G. Zumofen, A. Renn, and V. Sandoghdar, Phys. Rev. Lett. 107, 063001 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.063001
35.
35. S. A. Aljunid, M. K. Tey, B. Chng, T. Liew, G. Maslennikov, V. Scarani, and C. Kurtsiefer, Phys. Rev. Lett. 103, 153601 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.153601
36.
36. M. K. Tey, Z. Chen, S. A. Aljunid, B. Chng, F. Huber, G. Maslennikov, and C. Kurtsiefer, Nat. Phys. 4, 924 (2008).
http://dx.doi.org/10.1038/nphys1096
37.
37. W. J. Munro, K. Nemoto, and T. P. Spiller, New J. Phys. 7, 137 (2005).
http://dx.doi.org/10.1088/1367-2630/7/1/137
38.
38. J. Hwang and E. A. Hinds, New J. Phys. 13, 085009 (2011).
http://dx.doi.org/10.1088/1367-2630/13/8/085009
39.
39. C. Wang, C. Kurtsiefer, H. Weinfurter, and B. Burchard, J. Phys. B 39, 37 (2006).
http://dx.doi.org/10.1088/0953-4075/39/1/005
40.
40. E. Neu, C. Arend, E. Gross, F. Guldner, C. Hepp, D. Steinmetz, E. Zscherpel, S. Ghodbane, H. Sternschulte, D. Steinmüller-Nethl, Y. Liang, A. Krueger, and C. Becher, Appl. Phys. Lett. 98, 243107 (2011).
http://dx.doi.org/10.1063/1.3599608
41.
41. E. Neu, F. Guldner, C. Arend, Y. Liang, S. Ghodbane, H. Sternschulte, D. Steinmüller-Nethl, A. Krueger, and C. Becher, J. Appl. Phys. 113, 203507 (2013).
http://dx.doi.org/10.1063/1.4807398
http://aip.metastore.ingenta.com/content/aip/journal/apl/104/3/10.1063/1.4862207
Loading
/content/aip/journal/apl/104/3/10.1063/1.4862207
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/104/3/10.1063/1.4862207
2014-01-21
2015-03-04

Abstract

A diamond nano-crystal hosting a single nitrogen vacancy (NV) center is optically selected with a confocal scanning microscope and positioned deterministically onto the subwavelength-diameter waist of a tapered optical fiber (TOF) with the help of an atomic force microscope. Based on this nano-manipulation technique, we experimentally demonstrate the evanescent coupling of single fluorescence photons emitted by a single NV-center to the guided mode of the TOF. By comparing photon count rates of the fiber-guided and the free-space modes and with the help of numerical finite-difference time domain simulations, we determine a lower and upper bound for the coupling efficiency of (9.5 ± 0.6)% and (10.4 ± 0.7)%, respectively. Our results are a promising starting point for future integration of single photon sources into photonic quantum networks and applications in quantum information science.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/104/3/1.4862207.html;jsessionid=qndc1ifr7tld.x-aip-live-02?itemId=/content/aip/journal/apl/104/3/10.1063/1.4862207&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center
http://aip.metastore.ingenta.com/content/aip/journal/apl/104/3/10.1063/1.4862207
10.1063/1.4862207
SEARCH_EXPAND_ITEM