1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
A tomographic technique for the simultaneous imaging of temperature, chemical species, and pressure in reactive flows using absorption spectroscopy with frequency-agile lasers
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/104/3/10.1063/1.4862754
1.
1. M. G. Allen, Meas. Sci. Technol. 9, 545562 (1998).
http://dx.doi.org/10.1088/0957-0233/9/4/001
2.
2. E. J. Beiting, Appl. Opt. 31, 13281343 (1992).
http://dx.doi.org/10.1364/AO.31.001328
3.
3. C. Belotti, F. Cuccoli, L. Facheris, and O. Vaselli, IEEE Trans. Geosci. Remote Sens. 41, 26292637 (2003).
http://dx.doi.org/10.1109/TGRS.2003.815400
4.
4. S. J. Carey, H. McCann, F. P. Hindle, K. B. Ozanyan, D. E. Winterbone, and E. Clough, Chem. Eng. J. 77, 111118 (2000).
http://dx.doi.org/10.1016/S1385-8947(99)00139-4
5.
5. J. Chen, D. Hou, T. Zhang, and Z. Zhou, Flow Meas. Instrum. 16, 321325 (2005).
http://dx.doi.org/10.1016/j.flowmeasinst.2005.03.006
6.
6. F. Cuccoli, L. Facheris, S. Tanelli, and D. Giuli, IEEE Trans. Geosci. Remote Sens. 38, 19221935 (2000).
http://dx.doi.org/10.1109/36.851774
7.
7. M. G. Twynstra and K. J. Daun, Appl. Opt. 51, 70597068 (2012).
http://dx.doi.org/10.1364/AO.51.007059
8.
8. W. Cai, D. J. Ewing, and L. Ma, Comput. Phys. Commun. 179, 250255 (2008).
http://dx.doi.org/10.1016/j.cpc.2008.02.012
9.
9. L. Ma, W. Cai, A. W. Caswell, T. Kraetschmer, S. T. Sanders, S. Roy, and J. R. Gord, Opt. Express 17, 86028613 (2009).
http://dx.doi.org/10.1364/OE.17.008602
10.
10. L. Ma, X. Li, S. T. Sanders, A. W. Caswell, S. Roy, D. H. Plemmons, and J. R. Gord, Opt. Express 21, 11521162 (2013).
http://dx.doi.org/10.1364/OE.21.001152
11.
11. W. Cai, D. J. Ewing, and L. Ma, Appl. Math. Comput. 217, 57545767 (2011).
http://dx.doi.org/10.1016/j.amc.2010.12.054
12.
12. J. Hult, R. S. Watt, and C. F. Kaminski, Opt. Express 15, 1138511395 (2007).
http://dx.doi.org/10.1364/OE.15.011385
13.
13. C. Kaminski, R. Watt, A. Elder, J. Frank, and J. Hult, Appl. Phys. B 92, 367378 (2008).
http://dx.doi.org/10.1007/s00340-008-3132-1
14.
14. J. Langridge, T. Laurila, R. Watt, R. Jones, C. Kaminski, and J. Hult, Opt. Express 16, 1017810188 (2008).
http://dx.doi.org/10.1364/OE.16.010178
15.
15. G. P. Agrawal, Nonlinear Fiber Optics (Springer, 2000).
16.
16. R. Watt, C. Kaminski, and J. Hult, “High bandwidth H2O absorption spectroscopy in a flame using a dispersed supercontinuum source,” in Conference on Lasers and Electro-Optics, San Jose, CA, 2008.
17.
17. R. S. Watt, T. Laurila, C. F. Kaminski, and J. Hult, Appl. Spectrosc. 63, 13891395 (2009).
http://dx.doi.org/10.1366/000370209790108987
18.
18. T. Laurila, I. Burns, J. Hult, J. Miller, and C. Kaminski, Appl. Phys. B 102, 271278 (2011).
http://dx.doi.org/10.1007/s00340-010-4044-4
19.
19. L. Rothman, I. Gordon, R. Barber, H. Dothe, R. Gamache, A. Goldman, V. Perevalov, S. Tashkun, and J. Tennyson, J. Quant. Spectrosc. Radiat. Transfer 111, 21392150 (2010).
http://dx.doi.org/10.1016/j.jqsrt.2010.05.001
20.
20. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, and J.-P. Champion, J. Quant. Spectrosc. Radiat. Transfer 110, 533572 (2009).
http://dx.doi.org/10.1016/j.jqsrt.2009.02.013
21.
21. H. Li, “Near-infrared diode laser absorption spectroscopy with applications to reactive systems and combustion control,” Ph.D. dissertation (Stanford University, 2007).
22.
22. K. L. Letchworth and D. C. Benner, J. Quant. Spectrosc. Radiat. Transfer 107, 173192 (2007).
http://dx.doi.org/10.1016/j.jqsrt.2007.01.052
23.
23. S. Tedder, S. O'Byrne, P. Danehy, and A. Cutler, “CARS Temperature and Species Concentration Measurements in a Supersonic Combustor with Normal Injection,” AIAA Paper 2005-616, 2005.
http://aip.metastore.ingenta.com/content/aip/journal/apl/104/3/10.1063/1.4862754
Loading
/content/aip/journal/apl/104/3/10.1063/1.4862754
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/104/3/10.1063/1.4862754
2014-01-21
2014-10-20

Abstract

This paper proposes a technique that can simultaneously retrieve distributions of temperature, concentration of chemical species, and pressure based on broad bandwidth, frequency-agile tomographic absorption spectroscopy. The technique holds particular promise for the study of dynamic combusting flows. A proof-of-concept numerical demonstration is presented, using representative phantoms to model conditions typically prevailing in near-atmospheric or high pressure flames. The simulations reveal both the feasibility of the proposed technique and its robustness. Our calculations indicate precisions of ∼70 K at flame temperatures and ∼0.05 bars at high pressure from reconstructions featuring as much as 5% Gaussian noise in the projections.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/104/3/1.4862754.html;jsessionid=5h7sf8f1r6s28.x-aip-live-02?itemId=/content/aip/journal/apl/104/3/10.1063/1.4862754&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A tomographic technique for the simultaneous imaging of temperature, chemical species, and pressure in reactive flows using absorption spectroscopy with frequency-agile lasers
http://aip.metastore.ingenta.com/content/aip/journal/apl/104/3/10.1063/1.4862754
10.1063/1.4862754
SEARCH_EXPAND_ITEM