Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. N. Sai and D. Vanderbilt, Phys. Rev. B 62, 13942 (2000).
2. C. Kittel, Introduction to Solid State Physics (Wiley, Hoboken, NJ, 2005).
3. G. Lüpke, N. H. Tolk, and L. C. Feldman, J. Appl. Phys. 93, 2317 (2003).
4. L. Hsu, M. D. McCluskey, and J. L. Lindström, Phys. Rev. Lett. 90, 095505 (2003).
5. M. D. McCluskey, Phys. Rev. Lett. 102, 135502 (2009).
6. R. Cuscó, N. Domènech-Amador, L. Artús, K. Wang, T. Yamaguchi, and Y. Nanishi, J. Appl. Phys. 112, 053528 (2012).
7. S. Barman and G. P. Srivastava, Phys. Rev. B 69, 235208 (2004).
8. S. Yang, J. Gong, and Y. Deng, J. Mater. Chem. 22, 13899 (2012).
9. Y.-J. Lin, T.-H. Su, J.-C. Lin, and Y.-C. Su, Synth. Met. 162, 406 (2012).
10. Z. L. Liu, Z. X. Mei, T. C. Zhang, Y. P. Liu, Y. Guo, X. L. Du, A. Hallen, J. J. Zhu, and A. Y. Kuznetsov, J. Cryst. Growth 311, 4356 (2009).
11. L. Zhang, Y. Jiang, Y. Ding, M. Povey, and D. York, J. Nanopart. Res. 9, 479 (2007).
12. H. Morkoç and U. Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology (Wiley-VCH, Weinheim, 2009).
13. X. P. Shu, C. Chen, Y. T. He, Z. R. Qiu, D. S. Wuu, and Z. C. Feng, Adv. Mater. Res. 746, 406 (2013).
14. J. F. Kong, W. Z. Shen, Y. W. Zhang, X. M. Li, and Q. X. Guo, Solid State Commun. 149, 10 (2009).
15. D. Thapa, J. Huso, H. Che, M. Huso, J. L. Morrison, D. Gutierrez, M. Grant Norton, and L. Bergman, Appl. Phys. Lett. 102, 191902 (2013).
16. D. Gammon, in Raman Scatt. Mater. Sci., edited by W. H. Weber and R. Merlin (Springer, New York, 2000).
17. P. Y. Yu and M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties (Springer, Berlin; New York, 1996).
18. D. Gammon, S. W. Brown, E. S. Snow, T. A. Kennedy, D. S. Katzer, and D. Park, Science 277, 85 (1997).
19. S. Hernández, R. Cuscó, D. Pastor, L. Artús, K. P. O'Donnell, R. W. Martin, I. M. Watson, Y. Nanishi, and E. Calleja, J. Appl. Phys. 98, 013511 (2005).
20. N. Wieser, O. Ambacher, H.-P. Felsl, L. Görgens, and M. Stutzmann, Appl. Phys. Lett. 74, 3981 (1999).
21. V. Lemos, E. Silveira, J. R. Leite, A. Tabata, R. Trentin, L. M. R. Scolfaro, T. Frey, D. J. As, D. Schikora, and K. Lischka, Phys. Rev. Lett. 84, 3666 (2000).
22. A. Kar, D. Alexson, M. Dutta, and M. A. Stroscio, J. Appl. Phys. 104, 073502 (2008).
23. D. Behr, J. Wagner, A. Ramakrishnan, H. Obloh, and K.-H. Bachem, Appl. Phys. Lett. 73, 241 (1998).
24. C. Raptis, Phys. Rev. B 33, 1350 (1986).
25. K. Ishikawa, N. Fujima, and H. Komura, J. Appl. Phys. 57, 973 (1985).
26. R. T. Harley, J. B. Page, Jr., and C. T. Walker, Phys. Rev. Lett. 23, 922 (1969).
27. G. D. Smith, S. Firth, R. J. H. Clark, and M. Cardona, J. Appl. Phys. 92, 4375 (2002).
28. M. Balkanski, R. F. Wallis, and E. Haro, Phys. Rev. B 28, 1928 (1983).
29. P. M. Fauchet and I. H. Campbell, Crit. Rev. Solid State Mater. Sci. 14, S79 (1988).
30. R. J. Nemanich and S. A. Solin, Phys. Rev. B 20, 392 (1979).
31. R. J. Nemanich, S. A. Solin, and R. M. Martin, Phys. Rev. B 23, 6348 (1981).
32. P. G. Klemens, Phys. Rev. 148, 845 (1966).
33. B. K. Ridley, J. Phys. Condens. Matter 8, L511 (1996).
34. J. Serrano, A. H. Romero, F. J. Manjón, R. Lauck, M. Cardona, and A. Rubio, Phys. Rev. B 69, 094306 (2004).
35. R. Cuscó, E. Alarcón-Lladó, J. Ibáñez, L. Artús, J. Jiménez, B. Wang, and M. J. Callahan, Phys. Rev. B 75, 165202 (2007).
36. J. D. Ye, K. W. Teoh, X. W. Sun, G. Q. Lo, D. L. Kwong, H. Zhao, S. L. Gu, R. Zhang, Y. D. Zheng, S. A. Oh, X. H. Zhang, and S. Tripathy, Appl. Phys. Lett. 91, 091901 (2007).
37. H. von Wenckstern, R. Schmidt-Grund, C. Bundesmann, A. Müller, C. P. Dietrich, M. Stölzel, M. Lange, and M. Grundmann, in Handbook of Zinc Oxide and Related Materials Vol. One Materials, edited by Z. C. Feng (CRC Press, Boca Raton, FL, 2013), pp. 257319.
38. M. J. L. Sangster, G. Peckham, and D. H. Saunderson, J. Phys. C 3, 1026 (1970).
39. J. Huso, J. L. Morrison, L. Bergman, and M. D. McCluskey, Phys. Rev. B 87, 125205 (2013).

Data & Media loading...


Article metrics loading...



Phonon decay channels and anharmonicities in embedded domains in MgZnO film were studied via selective resonant Raman scattering at the elevated temperature regime up to 870 K. The resonant conditions provided by excitation with different ultraviolet laser lines enabled the detection of longitudinal optical (LO) phonons from domains with the wurtzite structure, and domains with the cubic rocksalt structure which lack inversion symmetry due to alloying. The phonon behavior was modeled in terms of three- and four-phonon decay processes using Ridley and Klemens type decay processes. It is found that the wurtzite phase displays dominantly three-phonon decay with a small four-phonon component. In contrast, the cubic phase displays a higher degree of anharmonicity in which the four-phonon processes contribute significantly to the temperature dependent frequency shift. At the elevated temperature range, the LO frequency shift rate is ∼−2.6 × 10−2 cm−1/K for the wurtzite structure while that of the cubic exhibits a much larger shift rate of ∼−1.6 × 10−1 cm−1/K. The larger anharmonicity of the domains with the cubic structure is discussed in terms of strain and deformation effects.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd