1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/104/4/10.1063/1.4863202
1.
1. A. Boltasseva and V. M. Shalaev, Metamaterials 2, 1 (2008).
http://dx.doi.org/10.1016/j.metmat.2008.03.004
2.
2. A. K. Sarychev and G. Tartakovsky, Phys. Rev. B 75, 085436 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.085436
3.
3. H. A. Atwater and A. Polman, Nature Mater. 9, 205 (2010).
http://dx.doi.org/10.1038/nmat2629
4.
4. R. F. Oulton, Mater. Today 15, 26 (2012).
http://dx.doi.org/10.1016/S1369-7021(12)70018-4
5.
5. P. Berini and I. De Leon, Nat. Photonics 6, 16 (2012).
http://dx.doi.org/10.1038/nphoton.2011.285
6.
6. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.207402
7.
7. C. M. Watts, X. Liu, and W. J. Padilla, Adv. Mater. 24, OP98 (2012).
http://dx.doi.org/10.1002/adma.201200674
8.
8. J. C. C. Fan and P. M. Zavracky, Appl. Phys. Lett. 29, 478 (1976).
http://dx.doi.org/10.1063/1.89128
9.
9. H. G. Craighead and R. A. Buhrman, Appl. Phys. Lett. 31, 423 (1977).
http://dx.doi.org/10.1063/1.89732
10.
10. H. G. Craighead and R. A. Buhrman, J. Vac. Sci. Technol. 15, 269 (1978).
http://dx.doi.org/10.1116/1.569568
11.
11. J. I. Gittleman, Appl. Phys. Lett. 28, 370 (1976).
http://dx.doi.org/10.1063/1.88784
12.
12. M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, Adv. Mater. 23, 5410 (2011).
http://dx.doi.org/10.1002/adma.201102646
13.
13. M. K. Hedayati, F. Faupel, and M. Elbahri, Appl. Phys. A 109, 769 (2012).
http://dx.doi.org/10.1007/s00339-012-7344-1
14.
14. A. Leitner, Z. Zhao, H. Brunner, F. R. Aussenegg, and A. Wokaun, Appl. Opt. 32, 102 (1993).
http://dx.doi.org/10.1364/AO.32.000102
15.
15. J. Dai, F. Ye, Y. Chen, M. Muhammed, M. Qiu, and M. Yan, Opt. Express 21, 6697 (2013).
http://dx.doi.org/10.1364/OE.21.006697
16.
16. C. Hu, Z. Zhao, X. Chen, and X. Luo, Opt. Express 17, 11039 (2009).
http://dx.doi.org/10.1364/OE.17.011039
17.
17. C. Hu, L. Liu, Z. Zhao, X. Chen, and X. Luo, Opt. Express 17, 16745 (2009).
http://dx.doi.org/10.1364/OE.17.016745
18.
18. M. G. Nielsen, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, Opt. Express 20, 13311 (2012).
http://dx.doi.org/10.1364/OE.20.013311
19.
19. P. Ding, E. Liang, G. Cai, W. Hu, C. Fan, and Q. Xue, J. Opt. 13, 075005 (2011).
http://dx.doi.org/10.1088/2040-8978/13/7/075005
20.
20. X. Chen, H. Gong, S. Dai, D. Zhao, Y. Yang, Q. Li, and M. Qiu, Opt. Lett. 38, 2247 (2013).
http://dx.doi.org/10.1364/OL.38.002247
21.
21. J. Homola, S. S. Yee, and G. Gauglitz, Sens. Actuators B 54, 3 (1999).
http://dx.doi.org/10.1016/S0925-4005(98)00321-9
22.
22. B. Lamprecht, J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Felidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, Appl. Phys. Lett. 79, 51 (2001).
http://dx.doi.org/10.1063/1.1380236
23.
23. M. Zayat, P. Garcia-Parejo, and D. Levy, Chem. Soc. Rev. 36, 1270 (2007).
http://dx.doi.org/10.1039/b608888k
24.
24. V. G. Kravets, S. Neubeck, A. N. Grigorenko, and A. F. Kravets, Phys. Rev. B 81, 165401 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.165401
25.
25. A. Moreau, C. Ciraci, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, Nature 492, 86 (2012).
http://dx.doi.org/10.1038/nature11615
26.
26. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, Nature Commun. 2, 517 (2011).
http://dx.doi.org/10.1038/ncomms1528
27.
27. T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, J. Phys. Chem. B 104, 10549 (2000).
http://dx.doi.org/10.1021/jp002435e
28.
28. M. Jamali, M. K. Hedayati, B. Mozooni, M. Javaherirahim, R. Abdelaziz, A. U. Zillohu, and M. Elbahri, Adv. Mater. 23, 4243 (2011).
http://dx.doi.org/10.1002/adma.201102353
29.
29. B. Mahltig, H. Böttcher, K. Rauch, U. Dieckmann, R. Nitsche, and T. Fritz, Thin Solid Films 485, 108 (2005).
http://dx.doi.org/10.1016/j.tsf.2005.03.056
30.
30. M. Elbahri, M. K. Hedayati, K. S. V. Chakravadhanula, M. Jamali, T. Strunkus, V. Zaporotchenko, and F. Faupel, Adv. Mater. 23, 1993 (2011).
http://dx.doi.org/10.1002/adma.201003811
31.
31. N. L. Thomas and J. D. Wolfe, Proc. SPIE 4003, 312 (2000).
http://dx.doi.org/10.1117/12.391537
32.
32. Y. Saito, J. J. Wang, D. N. Batchelder, and D. A. Smith, Langmuir 19, 6857 (2003).
http://dx.doi.org/10.1021/la0301240
33.
33. G. Lévêque and O. J. F. Martin, Opt. Express 14, 9971 (2006).
http://dx.doi.org/10.1364/OE.14.009971
34.
34. B.-h. Choi, H.-H. Lee, S. Jin, S. Chun, and S.-H. Kim, Nanotechnology 18, 075706 (2007).
http://dx.doi.org/10.1088/0957-4484/18/7/075706
35.
35. H.-T. Chen, Opt. Express 20, 7165 (2012).
http://dx.doi.org/10.1364/OE.20.007165
36.
36. S. K. Mandal, R. K. Roy, and A. K. Pal, J. Phys. D: Appl. Phys. 35, 2198 (2002).
http://dx.doi.org/10.1088/0022-3727/35/17/317
37.
37. T. Huen, G. B. Irani, and F. Wooten, Appl. Opt. 10, 552 (1971).
http://dx.doi.org/10.1364/AO.10.000552
38.
38. P. Taneja, P. Ayyub, and R. Chandra, Phys. Rev. B 65, 245412 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.245412
39.
39. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, Adv. Mater. 19, 3628 (2007).
http://dx.doi.org/10.1002/adma.200700123
40.
40. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, Appl. Phys. Lett. 96, 251104 (2010).
http://dx.doi.org/10.1063/1.3442904
41.
41. R. Watanabe, M. Iwanaga, and T. Ishihara, Phys. Status Solidi B 245, 2696 (2008).
http://dx.doi.org/10.1002/pssb.200879899
42.
42. T. W. H. Oates and A. Mücklich, Nanotechnology 16, 2606 (2005).
http://dx.doi.org/10.1088/0957-4484/16/11/023
43.
43. J.-B. Brückner, J. Le Rouzo, L. Escoubas, G. Berginc, O. Calvo-Perez, N. Vukadinovic, and F. Flory, Opt. Express 21, 16992 (2013).
http://dx.doi.org/10.1364/OE.21.016992
44.
44. N. Engheta, “ Thin absorbing screens using metamaterial surfaces,” paper presented at the IEEE Antennas and Propagation Society International Symposium, 2002.
45.
45. B. D. Gupta and R. K. Verma, J. Sens. 2009, 979761 (2009).
http://dx.doi.org/10.1155/2009/979761
46.
46. M. Hillenkamp, G. D. Domenicantonio, O. Eugster, and C. Félix, Nanotechnology 18, 015702 (2007).
http://dx.doi.org/10.1088/0957-4484/18/1/015702
http://aip.metastore.ingenta.com/content/aip/journal/apl/104/4/10.1063/1.4863202
Loading
/content/aip/journal/apl/104/4/10.1063/1.4863202
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/104/4/10.1063/1.4863202
2014-01-27
2015-03-31

Abstract

Plasmonic metamaterials designed for optical frequency have to be shrunk down to few 10th of nanometer which turns their manufacturing cumbersome. Here, we shift the performance of metamaterial down to ultraviolet (UV) by using ultrathin nanocomposite as a tunable plasmonic metamaterial fabricated with tandem co-deposition. It provides the possibility to realize a plasmonic metamaterial absorber for UV frequency with marginal angle sensitivity. Its resonance frequency and intensity can be adjusted by changing thickness and filling factor of the composite. Presented approach for tunable metamaterials for high frequency could pave the way for their application for thermo-photovoltaic, stealth technology, and UV-protective coating.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/104/4/1.4863202.html;jsessionid=d419oncrb0mas.x-aip-live-02?itemId=/content/aip/journal/apl/104/4/10.1063/1.4863202&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Plasmonic tunable metamaterial absorber as ultraviolet protection film
http://aip.metastore.ingenta.com/content/aip/journal/apl/104/4/10.1063/1.4863202
10.1063/1.4863202
SEARCH_EXPAND_ITEM