1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
A low-temperature order-disorder transition in Cu2ZnSnS4 thin films
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/104/4/10.1063/1.4863685
1.
1. D. B. Mitzi, O. Gunawan, T. K. Todorov, and D. A. R. Barkhouse, Philos. Trans. R. Soc., A 371(1996 ), 20110432 (2013).
http://dx.doi.org/10.1098/rsta.2011.0432
2.
2. W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu, and D. B. Mitzi, “ Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency,” Adv. Energy Mater. (2013).
http://dx.doi.org/10.1002/aenm.201301465
3.
3. S. Siebentritt and S. Schorr, Prog. Photovoltaics 20(5 ), 512 (2012).
http://dx.doi.org/10.1002/pip.2156
4.
4. U. Rau and J. H. Werner, Appl. Phys. Lett. 84(19 ), 3735 (2004).
http://dx.doi.org/10.1063/1.1737071
5.
5. S. R. Hall, J. T. Szymanski, and J. M. Stewart, Can. Mineral. 16(2 ), 131 (1978).
6.
6. S. Schorr, Sol. Energy Mater. Sol. Cells 95(6 ), 1482 (2011).
http://dx.doi.org/10.1016/j.solmat.2011.01.002
7.
7. S. Schorr, H.-J. Hoebler, and M. Tovar, Eur. J. Mineral. 19(1 ), 65 (2007).
http://dx.doi.org/10.1127/0935-1221/2007/0019-0065
8.
8. D. Huang and C. Persson, Thin Solid Films 535(0 ), 265 (2013).
http://dx.doi.org/10.1016/j.tsf.2012.10.030
9.
9. T. Gokmen, O. Gunawan, T. K. Todorov, and D. B. Mitzi, Appl. Phys. Lett. 103(10 ), 103506 (2013).
http://dx.doi.org/10.1063/1.4820250
10.
10. W. L. Bragg and E. J. Williams, Proc. R. Soc. London. Ser A 145(855 ), 699 (1934).
http://dx.doi.org/10.1098/rspa.1934.0132
11.
11. G. H. Vineyard, Phys. Rev. 102(4 ), 981 (1956).
http://dx.doi.org/10.1103/PhysRev.102.981
12.
12. L. Choubrac, M. Paris, A. Lafond, C. Guillot-Deudon, X. Rocquefelte, and S. Jobic, Phys. Chem. Chem. Phys. 15(26 ), 10722 (2013).
http://dx.doi.org/10.1039/c3cp51320c
13.
13. G. Gouadec and P. Colomban, Prog. Cryst. Growth Mater. 53(1 ), 1 (2007).
http://dx.doi.org/10.1016/j.pcrysgrow.2007.01.001
14.
14. M. Y. Valakh, V. M. Dzhagan, I. S. Babichuk, X. Fontane, A. Perez-Rodriquez, and S. Schorr, JETP Lett. 98(5 ), 255 (2013).
http://dx.doi.org/10.1134/S0021364013180136
15.
15. A. Lafond, L. Choubrac, C. Guillot-Deudon, P. Fertey, M. Evain, and S. Jobic, “ X-ray resonant single crystal diffraction technique, a powerful tool to investigate the kesterite structure of the photovoltaic Cu2ZnSnS4 compound,” Acta Crystallographica B (unpublished).
16.
16. A. Khare, B. Himmetoglu, M. Johnson, D. J. Norris, M. Cococcioni, and E. S. Aydil, J. Appl. Phys. 111(8 ), 083707 (2012).
http://dx.doi.org/10.1063/1.4704191
17.
17. M. Grossberg, J. Krustok, J. Raudoja, and T. Raadik, Appl. Phys. Lett. 101(10 ), 102102 (2012).
http://dx.doi.org/10.1063/1.4750249
18.
18. M. Y. Valakh, O. F. Kolomys, S. S. Ponomaryov, V. O. Yukhymchuk, I. S. Babichuk, V. Izquierdo-Roca, E. Saucedo, A. Perez-Rodriguez, J. R. Morante, S. Schorr, and I. V. Bodnar, Phys. Status Solidi (RRL) 7(4 ), 258 (2013).
http://dx.doi.org/10.1002/pssr.201307073
19.
19. V. Izquierdo-Roca, private communication (2013).
20.
20. J. J. Scragg, T. Kubart, J. T. Wätjen, T. Ericson, M. K. Linnarsson, and C. Platzer-Björkman, Chem. Mater. 25(15 ), 3162 (2013).
http://dx.doi.org/10.1021/cm4015223
21.
21. J. J. Scragg, T. Ericson, T. Kubart, M. Edoff, and C. Platzer-Björkman, Chem. Mater. 23(20 ), 46254633 (2011).
http://dx.doi.org/10.1021/cm202379s
22.
22. L. Choubrac, A. Lafond, C. Guillot-Deudon, Y. Moëlo, and S. Jobic, Inorg. Chem. 51(6 ), 3346 (2012).
http://dx.doi.org/10.1021/ic202569q
23.
23. A. Lafond, L. Choubrac, C. Guillot-Deudon, P. Deniard, and S. Jobic, Z. Anorg. Allg. Chem. 638(15 ), 2571 (2012).
http://dx.doi.org/10.1002/zaac.201200279
24.
24. G. J. Dienes, Acta Metall. 3(6 ), 549 (1955).
http://dx.doi.org/10.1016/0001-6160(55)90114-0
25.
25. S. Chen, X. G. Gong, A. Walsh, and S.-H. Wei, Appl. Phys. Lett. 94(4 ), 041903 (2009).
http://dx.doi.org/10.1063/1.3074499
26.
26. S. Schorr and G. Gonzalez-Aviles, Physica Status Solidi A 206(5 ), 1054 (2009).
http://dx.doi.org/10.1002/pssa.200881214
http://aip.metastore.ingenta.com/content/aip/journal/apl/104/4/10.1063/1.4863685
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

The degree of order, , in a material having an order-disorder transition with critical temperature (calculated using the model of Vineyard. 11 ) The dashed line indicates the equilibrium case (i.e., after a long anneal). The solid lines show the effect of annealing initially disordered samples for fixed time periods and (  >  ).

Image of FIG. 2.

Click to view

FIG. 2.

Raman spectra with peak fitting for stoichiometric CZTS powder reference samples VS (slowly cooled, ordered) and VF (rapidly cooled, disordered), recorded with excitation wavelengths of 532 and 785 nm. The spectra are normalised to the main A mode intensity.

Image of FIG. 3.

Click to view

FIG. 3.

Raman spectra using 785 nm excitation, for an as-prepared CZTS film and three sections of the same film that were post annealed as indicated. The spectra are normalised to the main A mode intensity.

Image of FIG. 4.

Click to view

FIG. 4.

(a) Variation in for initially identical CZTS films post-annealed for different time periods. The triangles show the effect of temperature cycling on a single sample to test the reversibility of changes in . The shaded region indicates the probable location of the critical temperature . (b) The full-width-at-half-maximum (FWHM) of the main Raman A mode for the 1 h post-annealed samples.

Loading

Article metrics loading...

/content/aip/journal/apl/104/4/10.1063/1.4863685
2014-01-31
2014-04-16

Abstract

Cu ZnSnS (CZTS) is an interesting material for sustainable photovoltaics, but efficiencies are limited by the low open-circuit voltage. A possible cause of this is disorder among the Cu and Zn cations, a phenomenon which is difficult to detect by standard techniques. We show that this issue can be overcome using near-resonant Raman scattering, which lets us estimate a critical temperature of 533 ± 10 K for the transition between ordered and disordered CZTS. These findings have deep significance for the synthesis of high-quality material, and pave the way for quantitative investigation of the impact of disorder on the performance of CZTS-based solar cells.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/104/4/1.4863685.html;jsessionid=gjplddq09o8e5.x-aip-live-03?itemId=/content/aip/journal/apl/104/4/10.1063/1.4863685&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A low-temperature order-disorder transition in Cu2ZnSnS4 thin films
http://aip.metastore.ingenta.com/content/aip/journal/apl/104/4/10.1063/1.4863685
10.1063/1.4863685
SEARCH_EXPAND_ITEM