1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/104/6/10.1063/1.4864778
1.
1. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009).
http://dx.doi.org/10.1021/ja809598r
2.
2. I. Chung, B. Lee, J. Q. He, R. P. H. Chang, and M. G. Kanatzidis, Nature 485, 486 (2012).
http://dx.doi.org/10.1038/nature11067
3.
3. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, Science 338, 643 (2012).
http://dx.doi.org/10.1126/science.1228604
4.
4. J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Gratzel, Nature 499, 316 (2013).
http://dx.doi.org/10.1038/nature12340
5.
5. M. Z. Liu, M. B. Johnston, and H. J. Snaith, Nature 501, 395 (2013).
http://dx.doi.org/10.1038/nature12509
6.
6. J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, Nano Lett. 13, 1764 (2013).
http://dx.doi.org/10.1021/nl400349b
7.
7. N. G. Park, J. Phys. Chem. Lett. 4, 2423 (2013).
http://dx.doi.org/10.1021/jz400892a
8.
8. G. C. Xing, N. Mathews, S. Y. Sun, S. S. Lim, Y. M. Lam, M. Gratzel, S. Mhaisalkar, and T. C. Sum, Science 342, 344 (2013).
http://dx.doi.org/10.1126/science.1243167
9.
9. S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, Science 342, 341 (2013).
http://dx.doi.org/10.1126/science.1243982
10.
10. W. Schokley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961).
http://dx.doi.org/10.1063/1.1736034
11.
11. G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
12.
12. L. P. J. Even, J.-M. Jancu, and C. Katan, J. Phys. Chem. Lett. 4, 2999 (2013).
http://dx.doi.org/10.1021/jz401532q
13.
13. E. Mosconi, A. Amat, M. K. Nazeeruddin, M. Gratzel, and F. De Angelis, J. Phys. Chem. C 117, 13902 (2013).
http://dx.doi.org/10.1021/jp4048659
14.
14. M. A. Pena and J. L. G. Fierro, Chem. Rev. 101, 1981 (2001).
http://dx.doi.org/10.1021/cr980129f
15.
15. F. Brivio, A. B. Walker, and A. Walsh, APL Materials 1, 042111 (2013).
http://dx.doi.org/10.1063/1.4824147
16.
16. Y. Wang, T. Gould, J. Dobson, H. Zhang, H. Yang, X. Yao, and H. Zhao, “Density functional theory analysis of structural and electronic properties of orthorhombic perovskite CH3NH3PbI3,” Phys. Chem. Chem. Phys 16, 14241429 (2014).
http://dx.doi.org/10.1039/c3cp54479f
17.
17. S. H. Wei, Computational Materials Science 30, 337 (2004).
http://dx.doi.org/10.1016/j.commatsci.2004.02.024
18.
18. S. B. Zhang, S. H. Wei, A. Zunger, and H. Katayama-Yoshida, Phys Rev B 57, 9642 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.9642
19.
19. S. Y. Chen, X. G. Gong, A. Walsh, and S. H. Wei, Appl. Phys. Lett. 94, 041903 (2009).
http://dx.doi.org/10.1063/1.3074499
20.
20. A. Polizzotti, I. L. Repins, R. Noufi, S. H. Wei, and D. B. Mitzi, Energy Environ. Sci. 6, 3171 (2013).
http://dx.doi.org/10.1039/c3ee41781f
21.
21. W. J. Yin, S. H. Wei, M. M. Al-Jassim, and Y. F. Yan, Appl. Phys. Lett. 99, 142109 (2011).
http://dx.doi.org/10.1063/1.3647756
22.
22. C. S. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, Inorg. Chem. 52, 9019 (2013).
http://dx.doi.org/10.1021/ic401215x
23.
23. Y. Zhao and K Zhu, J. Phys. Chem. Lett. 4, 2880 (2013).
http://dx.doi.org/10.1021/jz401527q
24.
24. M. H. Kumar, N. Yantara, S. Dharani, M. Graetzel, S. Mhaisalkar, P. P. Boix, and N. Mathews, Chem. Commun. 49, 11089 (2013).
http://dx.doi.org/10.1039/c3cc46534a
http://aip.metastore.ingenta.com/content/aip/journal/apl/104/6/10.1063/1.4864778
Loading
/content/aip/journal/apl/104/6/10.1063/1.4864778
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/104/6/10.1063/1.4864778
2014-02-10
2014-11-22

Abstract

Thin-film solar cells based on Methylammonium triiodideplumbate (CHNHPbI) halide perovskites have recently shown remarkable performance. First-principle calculations show that CHNHPbI has unusual defect physics: (i) Different from common -type thin-film solar cell absorbers, it exhibits flexible conductivity from good -type, intrinsic to good -type depending on the growth conditions; (ii) Dominant intrinsic defects create only shallow levels, which partially explain the long electron-hole diffusion length and high open-circuit voltage in solar cell. The unusual defect properties can be attributed to the strong Pb lone-pair orbital and I orbital antibonding coupling and the high ionicity of CHNHPbI.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/104/6/1.4864778.html;jsessionid=61jgam0crjqhb.x-aip-live-02?itemId=/content/aip/journal/apl/104/6/10.1063/1.4864778&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber
http://aip.metastore.ingenta.com/content/aip/journal/apl/104/6/10.1063/1.4864778
10.1063/1.4864778
SEARCH_EXPAND_ITEM