Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, Science 285, 692698 (1999).
2. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, Prog. Photovoltaics 20, 1220 (2011).
3. A. C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell, and M. D. McGehee, Mater. Today 10, 2833 (2007).
4. K. L. Chopra, P. D. Paulson, and V. Dutta, Prog. Photovoltaics 12, 6992 (2004).
5. Y. Liang, Z. Xu, J. Xia, S. T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, Adv. Mater. 22, E135E138 (2010).
6. M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, Adv. Mater. 18, 789794 (2006).
7. B. Kim, H. R. Yeom, M. H. Yun, J. Y. Kim, and C. Yang, Macromolecules 45, 86588664 (2012).
8. J. S. Moon, J. Jo, and A. J. Heeger, Adv. Energy Mater. 2, 304308 (2012).
9. S. Gu¨nes, H. Neugebauer, and N. S. Sariciftci, Chem. Rev. 107, 13241338 (2007).
10. M. D. Irwin, D. B. Buchholz, A. W. Hains, R. P. H. Chang, and T. J. Marks, Proc. Natl. Acad. Sci. 105, 27832787 (2008).
11. Z. L. Guan, J. B. Kim, H. Wang, C. Jaye, D. A. Fischer, Y. L. Loo, and A. Kahn, Org. Electron. 11, 17791785 (2010).
12. E. L. Ratcliff, J. Meyer, K. X. Steirer, N. R. Armstrong, D. Olson, and A. Kahn, Org. Electron. 13, 744749 (2012).
13. S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, Nature Photonics 3, 297302 (2009).
14. Y. Sun, C. J. Takacs, S. R. Cowan, J. H. Seo, X. Gong, A. Roy, and A. J. Heeger, Adv. Mater. 23, 22262230 (2011).
15. N. Blouin, A. Michaud, and M. Leclerc, Adv. Mater. 19, 22952300 (2007).
16. R. Steim, F. R. Kogler, and C. J. Brabec, J. Mater. Chem. 20, 24992512 (2010).
17. Y. Cao, G. Yu, C. Zhang, R. Menon, and A. J. Heeger, Synth. Met. 87, 171174 (1997).
18. K. X. Steirer, P. F. Ndione, N. E. Widjonarko, M. T. Lloyd, J. Meyer, E. L. Ratcliff, A. Kahn, N. R. Armstrong, C. J. Curtis, D. S. Ginley, J. J. Berry, and D. C. Olson, Adv. Energy Mater. 1, 813820 (2011).
19. J. R. Manders, S. W. Tsang, M. J. Hartel, T. H. Lai, S. Chen, C. M. Amb, J. R. Reynolds, and F. So, Adv. Funct. Mater. 23, 29933001 (2013).
20. J. Kettle, H. Waters, M. Horie, and S. W. Chang, J. Phys. D 45, 125102 (2012).
21. T. Y. Chu, S. Alem, P. G. Verly, S. Wakim, J. Lu, Y. Tao, S. Beaupré, M. Leclerc, F. Bélanger, D. Désilets, S. Rodman, D. Waller, and R. Gaudiana, Appl. Phys. Lett. 95, 063304 (2009).
22. J. Jung, D. L. Kim, S. H. Oh, and H. J. Kim, Sol. Energy Mater. Sol. Cells 102, 103108 (2012).
23. A. K. Kyaw, X. W. Sun, C. Y. Jiang, G. Q. Lo, D. W. Zhao, and D. L. Kwong, Appl. Phys. Lett. 93, 221107 (2008).
24. S. Han, W. S. Shin, M. Seo, D. Gupta, S. J. Moon, and S. Yoo, Org. Electron. 10, 791797 (2009).
25. G. Li, C. W. Chu, V. Shrotriya, J. Huang, and Y. Yang, Appl. Phys. Lett. 88, 253503 (2006).
26. E. L. Ratcliff, J. Meyer, K. X. Steirer, A. Garcia, J. J. Berry, D. S. Ginley, D. C. Olson, A. Kahn, and N. R. Armstrong, Chem. Mater. 23, 49885000 (2011).
27. J. S. Kim, B. La¨gel, E. Moons, N. Johansson, I. D. Baikie, W. R. Salaneck, R. H. Friend, and F. Cacialli, Synth. Met. 111, 311314 (2000).
28. D. Cahen and A. Kahn, Adv. Mater. 15, 271277 (2003).
29. M. T. Greiner, M. G. Helander, W. M. Tang, Z. B. Wang, J. Qiu, and Z. H. Lu, Nature Mater. 11, 7681 (2012).
30. E. Bovill, J. Griffin, T. Wang, J. W. Kingsley, H. Yi, A. Iraqi, A. R. Buckley, and D. G. Lidzey, Appl. Phys. Lett. 102, 183303 (2013).
31. D. R. Lide, Handbook of Chemistry and Physics, 79th ed. (CRC Press, Boca Raton, 1998).

Data & Media loading...


Article metrics loading...



Nickel oxide thin films have been prepared from a nickel acetylacetonate (Ni(acac)) precursor for use in bulk heterojunction organic photovoltaic devices. The conversion of Ni(acac) to NiO has been investigated. Oxygen plasma treatment of the NiO layer after annealing at 400 °C affords solar cell efficiencies of 5.2%. Photoelectron spectroscopy shows that high temperature annealing converts the Ni(acac) to a reduced form of nickel oxide. Additional oxygen plasma treatment further oxidizes the surface layers and deepens the NiO work function from 4.7 eV for the annealed film, to 5.0 eV allowing for efficient hole extraction at the organic interface.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd