Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/104/7/10.1063/1.4865377
1.
1. N. Yazdi, F. Ayazi, and K. Najafi, Proc. IEEE 86, 1640 (1998).
http://dx.doi.org/10.1109/5.704269
2.
2. J. Chae, H. Kulah, and K. Najafi, IEEE J. Microelectromech. Syst. 14, 235 (2005).
http://dx.doi.org/10.1109/JMEMS.2004.839347
3.
3. R. Abdolvand, B. V. Amini, and F. Ayazi, IEEE J. Microelectromech. Syst. 16, 1036 (2007).
http://dx.doi.org/10.1109/JMEMS.2007.900879
4.
4. R. A. Dias, E. Cretu, R. Wolffenbuttel, and L. A. Rocha, Sens. Actuators, A 172, 47 (2011).
http://dx.doi.org/10.1016/j.sna.2011.01.027
5.
5. M. Lemkin and E. Boser, IEEE J. Solid-State Circuits 34, 456 (1999).
http://dx.doi.org/10.1109/4.753678
6.
6. H. Qu, D. Fang, and H. Xie, IEEE Sens. J. 8, 1511 (2008).
http://dx.doi.org/10.1109/JSEN.2008.923582
7.
7. S.-S. Tan, C.-Y. Liu, L.-K. Yeh, Y.-H. Chiu, M. S.-C. Lu, and K. Y. J. Hsu, IEEE Trans. Circuits Syst. 58, 2661 (2011).
http://dx.doi.org/10.1109/TCSI.2011.2142990
8.
8. Y.-C. Liu, M.-H. Tsai, T.-L. Tang, and W. Fang, J. Micromech. Microeng. 21, 105005 (2011).
http://dx.doi.org/10.1088/0960-1317/21/10/105005
9.
9. M.-H. Tsai, Y.-C. Liu, and W. Fang, IEEE J. Microelectromech. Syst. 21, 1329 (2012).
http://dx.doi.org/10.1109/JMEMS.2012.2205904
10.
10. S.-H. Tseng, M. S.-C. Lu, P.-C. Wu, Y.-C. Teng, H.-H. Tsai, and Y.-Z. Juang, J. Micromech. Microeng. 22, 055010 (2012).
http://dx.doi.org/10.1088/0960-1317/22/5/055010
11.
11. Y. Chiu, H.-C. Hong, and P.-C. Wu, IEEE J. Microelectromech. Syst. 22, 1285 (2013).
http://dx.doi.org/10.1109/JMEMS.2013.2282419
12.
12. J. Wu, G. K. Fedder, and L. R. Carley, IEEE J. Solid-State Circuits 39, 722 (2004).
http://dx.doi.org/10.1109/JSSC.2004.826329
13.
13. T. Konishi, D. Yamane, T. Matsushima, G. Motohashi, K. Kagaya, H. Ito, N. Ishihara, H. Toshiyoshi, K. Machida, and K. Masu, Jpn. J. Appl. Phys., Part 1 52, 06GL04 (2013).
http://dx.doi.org/10.7567/JJAP.52.06GL04
14.
14. D. Yamane, T. Konishi, T. Matsushima, G. Motohashi, K. Kagaya, H. Ito, N. Ishihara, H. Toshiyoshi, K. Machida, and K. Masu, in Proceedings of the 17th International Conference on Solid-State Sensors, Actuators and Microsystems, Barcelona, Spain, 16–20 June, 2013, pp. 2225.
15.
15. P. D. Mitcheson, E. M. Yeatman, G. K. Rao, A. S. Holmes, and T. C. Green, Proc. IEEE 96, 1457 (2008).
http://dx.doi.org/10.1109/JPROC.2008.927494
16.
16. H. Kulahv and K. Najafi, IEEE Sens. J. 8, 261 (2008).
http://dx.doi.org/10.1109/JSEN.2008.917125
17.
17. D. R. Lide, CRC Handbook of Chemistry and Physics, 75th ed. (CRC Press, Inc., Florida, 1994).
18.
18. K. Machida, S. Shigematsu, H. Morimura, Y. Tanabe, N. Sato, N. Shimoyama, T. Kumazaki, K. Kudou, M. Yano, and H. Kyuragi, IEEE Trans. Electron Devices 48, 2273 (2001).
http://dx.doi.org/10.1109/16.954466
19.
19. N. Sato, H. Morimura, S. Shigematsu, M. Yano, K. Kudou, T. Kamei, and K. Machida, Jpn. J. Appl. Phys., Part 1 44, 6481 (2005).
http://dx.doi.org/10.1143/JJAP.44.6481
20.
20. P. R. Gray, P. J. Hurst, S. H. Lewis, and R. G. Meyer, Analysis and Design of Analog Integrated Circuits, 4th ed. (John Wiley & Sons, Inc., New York, 2001), p. 796.
21.
21. S. D. Senturia, Microsystem Design (Springer Science+Business Media, Inc., New York, 2001).
22.
22. W. G. Jung, Op Amp Applications (Analog Devices, Inc., 2002), p. 183.
http://aip.metastore.ingenta.com/content/aip/journal/apl/104/7/10.1063/1.4865377
Loading
/content/aip/journal/apl/104/7/10.1063/1.4865377
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/104/7/10.1063/1.4865377
2014-02-18
2016-12-04

Abstract

This paper presents a design of microelectromechanical systems(MEMS) accelerometers for sensing sub-1 ( = 9.8 m/s2) acceleration. The accelerometer has a high-density proof mass to suppress the Brownian noise that dominates the output noise of the sensor. The low-temperature (<400 °C) process enables to integrate the accelerometer on the sensing complementary metal-oxide semiconductor circuit by electroplating of gold; a proof mass of 1020 m × 1020 m in area with the thickness of 12 m has been found to suppress the measured noise floor to 0.78  at 300 K, which is nearly one order of magnitude smaller than those of the conventional MEMS accelerometers made of silicon.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/104/7/1.4865377.html;jsessionid=xk3zFe6kCxuoCZ79g6Fy_kxk.x-aip-live-02?itemId=/content/aip/journal/apl/104/7/10.1063/1.4865377&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/104/7/10.1063/1.4865377&pageURL=http://scitation.aip.org/content/aip/journal/apl/104/7/10.1063/1.4865377'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,