Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/104/7/10.1063/1.4865921
1.
1. W. Wei, X.-Y. Bao, C. Soci, Y. Ding, Z.-L. Wang, and D. Wang, Nano Lett. 9, 2926 (2009).
http://dx.doi.org/10.1021/nl901270n
2.
2. J. C. Shin, K. H. Kim, K. J. Yu, H. Hu, L. Yin, C.-Z. Ning, J. A. Rogers, J.-M. Zuo, and X. Li, Nano Lett. 11, 4831 (2011).
http://dx.doi.org/10.1021/nl202676b
3.
3. M. T. Björk, H. Schmid, C. D. Bessire, K. E. Moselund, H. Ghoneim, S. Karg, E. Lörtscher, and H. Riel, Appl. Phys. Lett. 97, 163501 (2010).
http://dx.doi.org/10.1063/1.3499365
4.
4. T. Yang, S. Hertenberger, S. Morkötter, G. Abstreiter, and G. Koblmüller, Appl. Phys. Lett. 101, 233102 (2012).
http://dx.doi.org/10.1063/1.4768001
5.
5. K. Tomioka and T. Fukui, Appl. Phys. Lett. 98, 083114 (2011).
http://dx.doi.org/10.1063/1.3558729
6.
6. K. E. Moselund, H. Schmid, C. Bessire, M. T. Björk, H. Ghoneim, and H. Riel, IEEE Electron Devices Lett. 33, 1453 (2012).
http://dx.doi.org/10.1109/LED.2012.2206789
7.
7. C. D. Bessire, M. T. Björk, H. Schmid, A. Schenk, K. B. Reuter, and H. Riel, Nano Lett. 11, 4195 (2011).
http://dx.doi.org/10.1021/nl202103a
8.
8. K. Tomioka, M. Yoshimura, and T. Fukui, IEEE VLSI Symp. - Tech. Dig. 2012, 47.
http://dx.doi.org/10.1109/VLSIT.2012.6242454
9.
9. K. Tomioka, J. Motohisa, S. Hara, and T. Fukui, Nano Lett. 8, 3475 (2008).
http://dx.doi.org/10.1021/nl802398j
10.
10. K. Tomioka, Y. Kobayashi, J. Motohisa, S. Hara, and T. Fukui, Nanotechnology 20, 145302 (2009).
http://dx.doi.org/10.1088/0957-4484/20/14/145302
11.
11. K. Tomioka, M. Yoshimura, and T. Fukui, Nature 488, 189 (2012).
http://dx.doi.org/10.1038/nature11293
12.
12. K. Tomioka, M. Yoshimura, and T. Fukui, Nano Lett. 13, 5822 (2013).
http://dx.doi.org/10.1021/nl402447h
13.
13. I. Ferain, A. A. Colinge, and J.-P. Colinge, Nature 479, 310 (2011).
http://dx.doi.org/10.1038/nature10676
14.
14. J. A. del Alamo, Nature 479, 317 (2011).
http://dx.doi.org/10.1038/nature10677
15.
15. R. Pillarisetty, Nature 479, 324 (2011).
http://dx.doi.org/10.1038/nature10678
16.
16. A. C. Seabaugh and Q. Zhang, Proc. IEEE 98, 2095 (2010).
http://dx.doi.org/10.1109/JPROC.2010.2070470
17.
17. W.-Y. Choi, B.-G. Park, J. F. Lee, and T. -J. K. Liu, IEEE Electron Devices Lett. 28, 743 (2007).
http://dx.doi.org/10.1109/LED.2007.901273
18.
18. R. Gandhi, Z. Chen, N. Singh, K. Benerjee, and S. Lee, IEEE Electron Devices Lett. 32, 437 (2011).
http://dx.doi.org/10.1109/LED.2011.2106757
19.
19. H. H. Wieder, J. Vac. Sci. Technol. B 21, 1915 (2003).
http://dx.doi.org/10.1116/1.1588646
20.
20. J. Noborisaka, T. Sato, J. Motohisa, S. Hara, K. Tomioka, and T. Fukui, Jpn. J. Appl. Phys. 46, 7562 (2007).
http://dx.doi.org/10.1143/JJAP.46.7562
21.
21. Z. M. Fang, K. Y. Ma, R. M. Cohen, and G. B. Stringfellow, Appl. Phys. Lett. 59, 1446 (1991).
http://dx.doi.org/10.1063/1.105283
22.
22. L. D. Michielis, L. Lattanzio, K. E. moselund, H. Riel, and A. M. Ionescu, IEEE Electron Devices Lett. 34, 726 (2013).
http://dx.doi.org/10.1109/LED.2013.2257665
23.
23. G. Dewey, B. Chu-Kung, J. Boardman, J. M. Fastenau, J. Kavalieros, R. Kotlyar, W. K. Liu, D. Lubyshev, M. Metz, N. Mukherjee, P. Oakey, R. Pillarisetty, M. Radosavljevic, H. W. Then, and R. Chau, IEEE IEDM - Tech. Dig. 2011, 785.
http://dx.doi.org/10.1109/IEDM.2011.6131666
24.
24. W. G. Vandenberghe, A. S. Verhulst, B. Sorée, W. Magnus, G. Groeseneken, Q. Smets, M. Heyns, and M. V. Fischetti, Appl. Phys. Lett. 102, 013510 (2013).
http://dx.doi.org/10.1063/1.4773521
25.
25.See supplementary material at http://dx.doi.org/10.1063/1.4865921 for the effect of Zn pulse doping of InGaAs nanowire. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/apl/104/7/10.1063/1.4865921
Loading
/content/aip/journal/apl/104/7/10.1063/1.4865921
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/104/7/10.1063/1.4865921
2014-02-19
2016-05-26

Abstract

We report on a fabrication of tunnel field-effect transistors using InGaAs nanowire/Si heterojunctions and the characterization of scaling of channel lengths. The devices consisted of single InGaAs nanowires with a diameter of 30 nm grown on -type Si(111) substrates. The switch demonstrated steep subthreshold-slope (30 mV/decade) at drain-source voltage (V) of 0.10 V. Also, pinch-off behavior appeared at moderately low V, below 0.10 V. Reducing the channel length of the transistors attained a steep subthreshold slope (<60 mV/decade) and enhanced the drain current, which was 100 higher than that of the longer channels.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/104/7/1.4865921.html;jsessionid=cp9LMK2wBGnzpsoHbFRgSI+n.x-aip-live-06?itemId=/content/aip/journal/apl/104/7/10.1063/1.4865921&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/104/7/10.1063/1.4865921&pageURL=http://scitation.aip.org/content/aip/journal/apl/104/7/10.1063/1.4865921'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,