Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. H. Daido, M. Nishiuchi, and A. S. Pirozchov, Rep. Prog. Phys. 75, 056401 (2012).
2. K. Ledingham, P. McKenna, T. McCanny, S. Shimizu, J. Yang, L. Robson, J. Zweit, M. J. Gillies, J. Bailey, G. Chimon et al., J. Phys. D: Appl. Phys. 37, 2341 (2004).
3. M. Roth, T. Cowan, M. Key, S. Hatchett, C. Brown, W. Fountain, J. Johnson, D. Pennington, R. Snavely, S. Wilks et al., Phys. Rev. Lett. 86, 436 (2001).
4. R. A. Snavely, M. H. Key, S. P. Hatchett, T. E. Cowan, M. Roth, T. W. Phillips, M. A. Stoyer, E. A. Henry, T. C. Sangster, M. S. Singh et al., Phys. Rev. Lett. 85, 2945 (2000).
5. K. A. Flippo, E. D'Humières, S. A. Gaillard, J. Rassuchine, D. C. Gautier, M. Schollmeier, F. Nürnberg, J. L. Kline, J. Adams, B. Albright et al., Phys. Plasmas 15, 056709 (2008).
6. J. Fuchs, P. Antici, E. D'Humières, E. Lefebvre, M. Borghesi, E. Brambrink, C. A. Cecchetti, M. Kaluza, V. Malka, M. Manclossi et al., Nat. Phys. 2, 48 (2006).
7. D. Neely, P. Foster, A. P. L. Robinson, F. Lindau, O. Lundh, A. Persson, C.-G. Wahlström, and P. McKenna, Appl. Phys. Lett. 89, 021502 (2006).
8. O. Tresca, D. C. Carroll, X. H. Yuan, B. Aurand, V. Bagnoud, C. M. Brenner, M. Coury, J. Fils, R. J. Gray, T. Kühl et al., Plasma Phys. Controlled Fusion 53, 105008 (2011).
9. S. Buffechoux, J. Psikal, M. Nakatsutsumi, L. Romagnani, A. Andreev, K. Zeil, M. Amin, P. Antici, T. Burris-Mog, A. Compant-La-Fontaine et al., Phys. Rev. Lett. 105, 015005 (2010).
10. P. McKenna, D. C. Carroll, O. Lundh, F. Nürnberg, K. Markey, S. Bandyopadhyay, D. Batani, R. G. Evans, R. Jafer, S. Kar et al., Laser Part. Beams. 26, 591 (2008).
11. F. Dollar, T. Matsuoka, G. M. Petrov, A. G. R. Thomas, S. S. Bulanov, V. Chvykov, J. Davis, G. Kalinchenko, C. McGuffey, L. Willingdale et al., Phys. Rev. Lett. 107, 065003 (2011).
12. K. Markey, P. McKenna, C. M. Brenner, D. C. Carroll, M. M. Günther, K. Harres, S. Kar, K. Lancaster, F. Nürnberg, M. N. Quinn et al., Phys. Rev. Lett. 105, 195008 (2010).
13. S. C. Wilks, A. B. Langdon, T. E. Cowan, M. Roth, M. Singh, S. Hatchett, M. H. Key, D. Pennington, A. MacKinnon, and R. A. Snavely, Phys. Plasmas 8, 542 (2001).
14. E. L. Clark, K. Krushelnick, M. Zepf, F. N. Beg, M. Tatarakis, A. Machacek, M. I. K. Santala, I. Watts, P. A. Norreys, and A. E. Dangor, Phys. Rev. Lett. 85, 1654 (2000).
15. A. P. L. Robinson, D. Neely, P. McKenna, and R. G. Evans, Plasma Phys. Controlled Fusion 49, 373 (2007).
16. I. O. Musgrave, Central Laser Facility Annual Report, 2011, report 1, section 11, p. 27, available at
17. W. Shaikh, I. O. Musgrave, M. Galimberti, and A. Boyle, SPIE Proc. 8240, 82400T (2012).
18. P. R. Bolton, M. Borghesi, C. M. Brenner, D. C. Carroll, C. De-Martinis, A. Flacco, V. Floquet, J. Fuchs, P. Gallegos, D. Giove et al., “Instrumentation for diagnostics and control of laser-accelerated proton (ion) beams,” Phys. Med. (published online).
19. E. Breschi, M. Borghesi, M. Galimberti, D. Giulietti, L. A. Gizzi, and L. Romagnani, Nucl. Instrum. Methods Phys. Res., Sect. A 522, 190 (2004).
20. L. O. Silva, M. Marti, J. R. Davies, R. A. Fonseca, C. Ren, F. S. Tsung, and W. B. Mori, Phys. Rev. Lett. 92, 015002 (2004).
21. P. Mora, Phys. Rev. Lett. 90, 185002 (2003).

Data & Media loading...


Article metrics loading...



An all-optical approach to laser-proton acceleration enhancement is investigated using the simplest of target designs to demonstrate application-relevant levels of energy conversion efficiency between laser and protons. Controlled deposition of laser energy, in the form of a double-pulse temporal envelope, is investigated in combination with thin foil targets in which recirculation of laser-accelerated electrons can lead to optimal conditions for coupling laser drive energy into the proton beam. This approach is shown to deliver a substantial enhancement in the coupling of laser energy to 5–30 MeV protons, compared to single pulse irradiation, reaching a record high 15% conversion efficiency with a temporal separation of 1 ps between the two pulses and a 5 m-thick Au foil. A 1D simulation code is used to support and explain the origin of the observation of an optimum pulse separation of ∼1 ps.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd