Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/104/8/10.1063/1.4866339
1.
1. W. Nottingham, Phys. Rev. 59, 906 (1941).
http://dx.doi.org/10.1103/PhysRev.59.906.2
2.
2. G. M. Fleming and J. E. Henderson, Phys. Rev. 58, 887 (1940).
http://dx.doi.org/10.1103/PhysRev.58.887
3.
3. F. M. Charbonnier, R. W. Strayer, L. W. Swanson, and E. E. Martin, Phys. Rev. Lett. 13, 397 (1964).
http://dx.doi.org/10.1103/PhysRevLett.13.397
4.
4. L. W. Swanson, L. C. Crouser, and F. M. Charbonnier, Phys. Rev. 151, 327 (1966).
http://dx.doi.org/10.1103/PhysRev.151.327
5.
5. M. Drechsler, Z. Naturforsch. A 18, 1367 (1963).
6.
6. I. Engle and P. H. Cutler, Surf. Sci. 12, 208 (1968).
http://dx.doi.org/10.1016/0039-6028(68)90124-6
7.
7. T. S. Fisher and D. G. Walker, Trans. ASME 124, 954 (2002).
http://dx.doi.org/10.1115/1.1494091
8.
8. T. L. Westover and T. S. Fisher, Heat Transfer Eng. 29, 395 (2008).
http://dx.doi.org/10.1080/01457630701825754
9.
9. G. D. Mahan, J. Appl. Phys. 76, 4362 (1994).
http://dx.doi.org/10.1063/1.357324
10.
10. Y. Hishnuma, T. H. Geballe, B. Y. Moyzhes, and T. W. Kenny, Appl. Phys. Lett. 78, 2572 (2001).
http://dx.doi.org/10.1063/1.1365944
11.
11. A. Shakouri, C. LaBounty, J. Piprek, P. Abraham, and J. E. Bowers, Appl. Phys. Lett. 74, 88 (1999).
http://dx.doi.org/10.1063/1.122960
12.
12. G. S. Nolas and H. J. Goldsmid, J. Appl. Phys. 85, 4066 (1999).
http://dx.doi.org/10.1063/1.370311
13.
13. A. N. Korotkov and K. K. Likharev, Appl. Phys. Lett. 75, 2491 (1999).
http://dx.doi.org/10.1063/1.125058
14.
14. M. S. Chung, S. C. Hong, A. Mayer, P. H. Cutler, B. L. Weiss, and N. M. Miskovsky, Appl. Phys. Lett. 92, 083505 (2008).
http://dx.doi.org/10.1063/1.2885086
15.
15. M. S. Chung, A. Mayer, B. L. Weiss, N. M. Miskovsky, and P. H. Cutler, Appl. Phys. Lett. 98, 243502 (2011).
http://dx.doi.org/10.1063/1.3599850
16.
16. K. L. Jensen and E. G. Zaidman, J. Vac. Sci. Technol. B 13, 511 (1995).
http://dx.doi.org/10.1116/1.588344
17.
17. A. Modinos, Field, Thermionic, and Secondary Electron Emission Spectroscopy (Plenum, New York, 1984).
18.
18. T. T. Tsong, Surf. Sci. 81, 28 (1979).
http://dx.doi.org/10.1016/0039-6028(79)90503-X
19.
19. V. T. Binh, S. T. Purcell, N. Garcia, and J. Doglioni, Phys. Rev. Lett. 69, 2527 (1992).
http://dx.doi.org/10.1103/PhysRevLett.69.2527
20.
20. W. W. Lui and M. Fukuma, J. Appl. Phys. 60, 1555 (1986).
http://dx.doi.org/10.1063/1.337788
21.
21. N. D. Arora, J. R. Hauser, and D. J. Roulston, IEEE Trans. Electron Devices ED-29, 292 (1982).
http://dx.doi.org/10.1109/T-ED.1982.20698
22.
22. O. Madelung, Semiconductors Basic Data, 2nd ed. (Springer, New York, 1996).
23.
23. A. Stranz, J. Kähler, A. Waag, and E. Peiner, J. Electron. Mater. 42, 2381 (2013).
http://dx.doi.org/10.1007/s11664-013-2508-0
24.
24. I. Brodie and C. A. Spindt, “ Advances in physics,” in Vacuum Microelectronics (Academic Press, New York, 1992), Vol. 83, p. 1.
http://aip.metastore.ingenta.com/content/aip/journal/apl/104/8/10.1063/1.4866339
Loading
/content/aip/journal/apl/104/8/10.1063/1.4866339
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/104/8/10.1063/1.4866339
2014-02-24
2016-12-05

Abstract

The cooling effect of field emission from an n-type semiconductor was theoretically investigated in quest for a solid state cooler. The vacuum potential was exactly expressed in terms of the semiconductor cathode geometry. This leaded to the more accurate configuration-dependent calculations of the energy exchange and the cooling power. It has been shown that a sharper tip of semiconductor can yield either a larger field emission current density or a larger energy exchange, according to the applied bias. For an atomic size tip, the n-Si cathode yielded the cooling power density  = 2.0, 75, and 713 W/cm2 at temperature  = 300, 600, and 900 K, respectively. This implies that an optimized configuration of an n-Si cathode produces a significant electron emission cooling, especially at high temperatures.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/104/8/1.4866339.html;jsessionid=ulFWwrbqBe5KsUNI2y3YcLlV.x-aip-live-06?itemId=/content/aip/journal/apl/104/8/10.1063/1.4866339&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/104/8/10.1063/1.4866339&pageURL=http://scitation.aip.org/content/aip/journal/apl/104/8/10.1063/1.4866339'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,