Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/104/8/10.1063/1.4866859
1.
1. N. A. Spaldin and M. Fiebig, Science 309, 391 (2005).
http://dx.doi.org/10.1126/science.1113357
2.
2. H. Bea and P. Paruch, Nature Mater. 8, 168 (2009).
http://dx.doi.org/10.1038/nmat2393
3.
3. A. Aird and E. K. H. Salje, J. Phys.: Condens. Matter. 10, L377 (1998).
http://dx.doi.org/10.1088/0953-8984/10/22/003
4.
4. Y. Kim, M. Alexe, and E. K. H. Salje, Appl. Phys. Lett. 96, 032904 (2010).
http://dx.doi.org/10.1063/1.3292587
5.
5. A. Aird and E. K. H. Salje, Eur. Phys. J. B 15, 205 (2000).
http://dx.doi.org/10.1007/PL00011037
6.
6. J. Seidel, P. Maksymovych, Y. Batra, A. Katan, S.-Y. Yang, Q. He, A. P. Baddorf, S. V. Kalinin, C.-H. Yang, J.-C. Yang, Y.-H. Chu, E. K. H. Salje, H. Wormeester, M. Salmeron, and R. Ramesh, Phys. Rev. Lett. 105, 197603 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.197603
7.
7. M. Calleja, M. T. Dove, and E. K. H. Salje, J. Phys.: Condens. Matter. 15, 2301 (2003).
http://dx.doi.org/10.1088/0953-8984/15/14/305
8.
8. M. Calleja, M. T. Dove, and E. K. H. Salje, J. Phys.: Condens. Matter. 13, 9445 (2001).
http://dx.doi.org/10.1088/0953-8984/13/42/305
9.
9. A. Ohtomo and H. Y. Hwang, Nature 427, 423 (2004).
http://dx.doi.org/10.1038/nature02308
10.
10. A. Pauli, S. J. Leake, B. Delley, M. Björck, C. W. Schneider, C. M. Schlepütz, D. Martoccia, S. Paetel, J. Mannhart, and P. R. Willmott, Phys. Rev. Lett. 106, 036101 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.036101
11.
11. M. Huijben, G. Rijnders, D. H. A. Blank, S. Bals, S. V. Aert, J. Verbeeck, G. V. Tendeloo, A. Brinkman, and H. Hilgenkamp, Nature Mater. 5, 556 (2006).
http://dx.doi.org/10.1038/nmat1675
12.
12. G. Herranz, M. Basletić, M. Bibes, C. Carrétéro, E. Tafra, E. Jacquet, K. Bouzehouane, C. Deranlot, A. Hamzić, J.-M. Broto, A. Barthélémy, and A. Fert, Phys. Rev. Lett. 98, 216803 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.216803
13.
13. B. Kalisky, J. R. Kirtley, J. G. Analytis, J.-H. Chu, I. R. Fisher, and K. A. Moler, Phys. Rev. B 83, 064511 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.064511
14.
14. S. Conti, S. Muller, A. Poliakovsky, and E. K. H. Salje, J. Phys.: Condens. Matter. 23, 142203 (2011).
http://dx.doi.org/10.1088/0953-8984/23/14/142203
15.
15. A. Lubk, S. Gemming, and N. A. Spaldin, Phys. Rev. B 80, 104110 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.104110
16.
16. T. Lottermoser and M. Fiebig, Phys. Rev. B 70, 220407 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.220407
17.
17. E. K. H. Salje, Chem. Phys. Chem. 11, 940 (2010).
http://dx.doi.org/10.1002/cphc.200900943
18.
18. E. K. H. Salje and H. Zhang, Phase Transitions 82, 452 (2009).
http://dx.doi.org/10.1080/01411590902936138
19.
19. J. Přívratská and V. Janovec, Ferroelectrics 222, 23 (1999).
http://dx.doi.org/10.1080/00150199908014794
20.
20. L. Goncalves-Ferreira, S. A. T. Redfern, E. Artacho, E. K. H. Salje, and W. T. Lee, Phys. Rev. B 81, 024109 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.024109
21.
21. H. Q. Yuan, D. F. Agterberg, N. Hayashi, P. Badica, D. Vandervelde, K. Togano, M. Sigrist, and M. B. Salamon, Phys. Rev. Lett. 97, 017006 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.017006
22.
22. S. V. Aert, S. Turner, R. Delville, D. Schryvers, G. V. Tendeloo, and E. K. H. Salje, Adv. Mater. 24, 523 (2012).
http://dx.doi.org/10.1002/adma.201103717
23.
23. E. Mishina, T. Misuryaev, N. Sherstyuk, V. Lemanov, A. Morozov, A. Sigov, and T. Raising, Phys. Rev. Lett. 85, 3664 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.3664
24.
24. H. Yokota, H. Usami, R. Haumont, P. Hicher, J. Kaneshiro, E. K. H. Salje, and Y. Uesu, “ Direct Evidence of Polar Nature of Ferroelastic Twin Boundaries in CaTiO3 Using Second Harmonic Generation Microscope,” Phys. Rev. B (submitted).
25.
25. D. Wang, E. H. Salje, C. J. S. Mi, and L. Bellaiche, Phys. Rev. B 88, 134107 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.134107
26.
26. E. K. H. Salje, O. Aktas, M. A. Carpenter, V. Laguta, and J. F. Scott, Phys. Rev. Lett. 111, 247603 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.247603
27.
27. A. V. Kityk, W. Schranz, P. Sondergeld, D. Havlik, E. K. H. Salje, and J. F. Scott, Phys. Rev. B 61, 946 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.946
28.
28. K. A. Müller and W. Berlinger, Phys. Rev. Lett. 26, 13 (1971).
http://dx.doi.org/10.1103/PhysRevLett.26.13
29.
29. M. A. Saifi and L. E. Cross, Phys. Rev. B 2, 677 (1970).
http://dx.doi.org/10.1103/PhysRevB.2.677
30.
30. E. K. Salje, Phase Transitions in Ferroelastic and Co-elastic Crystals (Cambridge Topics in Mineral Physics and Chemistry) (Cambridge University Press, Cambridge, 1993).
31.
31. S. Plimpton, J. Comput. Phys. 117, 1 (1995).
http://dx.doi.org/10.1006/jcph.1995.1039
32.
32. T. Schneider and E. Stoll, Phys. Rev. B 17, 1302 (1978).
http://dx.doi.org/10.1103/PhysRevB.17.1302
33.
33. S. Nosè, Mol. Phys. 57, 187 (1986).
http://dx.doi.org/10.1080/00268978600100141
34.
34. H. J. C. Berendsen, J. P. M. Postma, W. van Gunsteren, A. D. Nola, and J. Haak, J. Chem. Phys. 81, 3684 (1984).
http://dx.doi.org/10.1063/1.448118
35.
35. W. G. Hoover, Phys. Rev. A 31, 1695 (1985).
http://dx.doi.org/10.1103/PhysRevA.31.1695
36.
36. M. J. Akhtar, Z. Akhtar, R. A. Jackson, and C. R. A. Catlow, J. Am. Ceram. Soc. 78, 421 (1995).
http://dx.doi.org/10.1111/j.1151-2916.1995.tb08818.x
37.
37. F. W. Lytle, J. Appl. Phys. 35, 2212 (1964).
http://dx.doi.org/10.1063/1.1702820
38.
38. H. Kronmüller and S. Parkin, Handbook of Magnetism and Advanced Magnetic Materials (Wiley, 2007), Vol. 4.
39.
39. J. Hutton and R. J. Nelmes, J. Phys. C 14, 1713 (1981).
http://dx.doi.org/10.1088/0022-3719/14/12/006
40.
40. S. V. Bogdanov, A. M. Kashtanova, and K. V. Kiseleva, Bull. Acad. Sci. USSR 29, 902 (1965).
41.
41. K. A. Müller, W. Berlinger, and F. Waldner, Phys. Rev. Lett. 21, 814 (1968).
http://dx.doi.org/10.1103/PhysRevLett.21.814
42.
42. Q. Hui, M. G. Tucker, M. T. Dove, S. A. Wells, and D. A. Keen, J. Phys.: Condens. Matter. 17, S111 (2005).
http://dx.doi.org/10.1088/0953-8984/17/5/012
43.
43. K. Tsuda and M. Tanaka, Acta Crystallogr., Sect. A 51, 7 (1995).
http://dx.doi.org/10.1107/S010876739400560X
44.
44. C. R. A. Catlow, Z. X. Guo, M. Miskufova, S. A. Shevlin, A. G. H. Smith, A. A. Sokol, A. Walsh, D. J. Wilson, and S. M. Woodley, Philos. Trans. R. Soc., A 368, 3379 (2010).
http://dx.doi.org/10.1098/rsta.2010.0111
45.
45. L. Goncalves-Ferreira, S. A. T. Redfern, E. Artacho, and E. K. H. Salje, Phys. Rev. Lett. 101, 097602 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.097602
46.
46. J. X. Zhang, B. Xiang, Q. He, J. Seidel, R. J. Zeches, P. Yu, S. Y. Yang, C. H. Wang, Y.-H. Chu, L. Martin, A. M. Minor, and R. Ramesh, Nat. Nanotechnol. 6, 98 (2011).
http://dx.doi.org/10.1038/nnano.2010.265
47.
47. T. Menke, R. Dittmann, P. Meuffels, K. Szot, and R. Waser, J. Appl. Phys. 106, 114507 (2009).
http://dx.doi.org/10.1063/1.3267485
48.
48. S. S. P. Parkin, H. Masamitsu, and T. Luc, Science 320, 190 (2008).
http://dx.doi.org/10.1126/science.1145799
http://aip.metastore.ingenta.com/content/aip/journal/apl/104/8/10.1063/1.4866859
Loading
/content/aip/journal/apl/104/8/10.1063/1.4866859
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/104/8/10.1063/1.4866859
2014-02-26
2016-10-01

Abstract

We present computer simulations of previously unknown polarization singularities (vortexes) inside polar SrTiO twin boundaries. Usually polarity in twin walls is ferri-electric, whereas vortex excitations lead to true ferroelectricity on a very local scale. As a result, in-plane electric fields can selectively stabilize one of the vortex polarization states and enhance the ability of the walls to move. This behavior can explain the well-known and uniquely high, mobility of twin boundaries in SrTiO. For nanoscale ferroelectric memory devices, we envisage a precisely controllable device, where a desired domain wall pattern is manipulated by shifting the vortex position electrically.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/104/8/1.4866859.html;jsessionid=bPPbRQkJ-OX3z_6K5E-dMFvh.x-aip-live-03?itemId=/content/aip/journal/apl/104/8/10.1063/1.4866859&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/104/8/10.1063/1.4866859&pageURL=http://scitation.aip.org/content/aip/journal/apl/104/8/10.1063/1.4866859'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,