Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. S. Ovshinsky, Phys. Rev. Lett. 21(20), 14501453 (1968).
2. T. Ohta, J. Optoelectron. Adv. Mater. 3(3), 609626 (2001).
3. S. Raoux, D. Ielmini, M. Wuttig, and I. Karpov, MRS Bull. 37, 118123 (2012).
4. G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L. A. Lastras, A. Padilla, B. Rajendran, S. Raoux, and R. Shenoy, J. Vac. Sci. Technol. B 28(2), 223262 (2010).
5. M. Nardone, M. Simon, I. V. Karpov, and V. G. Karpov, J. Appl. Phys. 112(7), 071101 (2012).
6. F. Xiong, A. D. Liao, D. Estrada, and E. Pop, Science 332(6029), 568570 (2011).
7. M. H. R. Lankhorst, B. W. S. M. M. Ketelaars, and R. A. M. Wolters, Nat. Mater. 4. 347352 (2005).
8. S. K. Bahl and K. L. Chopra, J. Appl. Phys. 41(5), 21962212 (1970).
9. R. R. Helkes, R. C. Miller, and R. W. Ure, Jr., in Thermoelectricity-Science and Engineering, edited by R. C. Miller ( Interscience, NY, 1961) Chap. XIII.
10. R. Lan, R. Endo, M. Kuwahara, Y. Kobayashi, and M. Susa, J. Appl. Phys. 112, 053712 (2012).
11. E. K. Chua, L. P. Shi, R. Zhao, K. G. Lim, T. C. Chong, T. E. Schlesinger, and J. A. Bain, Appl. Phys. Lett. 97(18), 183506 (2010).
12. S. Raoux, B. Muñoz, H.-Y. Cheng, and J. L. Jordan-Sweet, Appl. Phys. Lett. 95, 143118 (2009).
13. S. Lai and T. Lowrey, Tech. Dig. - Int. Electron Devices Meet. 2001,
14. H. Lo, E. Chua, J. C. Huang, C. C. Tan, C.-Y. Wen, R. Zhao, L. Shi, C. T. Chong, J. Paramesh, T. E. Schlesinger, and J. A. Bain, IEEE Trans. Electron Devices 57(1), 312320 (2010).
15. Y. Shim, G. Hummel, and M. Rais-Zadeh, IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS) ( IEEE, 2013), pp.237240.
16. K. N. Chen, K. N. Chen, L. Krusin-Elbaum, D. M. Newns, B. G. Elmegreen, R. Cheek, N. Rana, A. M. Young, S. J. Koester, and C. Lam, IEEE Electron Device Lett. 29(1), 131133 (2008).
17. N. El-Hinnawy, P. Borodulin, B. Wagner, M. R. King, J. S. Mason, Jr., E. B. Jones, S. McLaughlin, V. Veliadis, M. Snook, M. E. Sherwin, R. S. Howell, R. M. Young, and M. J. Lee, IEEE Electron Device Lett. 34(10), 13131315 (2013).
18. S. Raoux, H.-Y. Cheng, M. A. Caldwell, and H.-S. P. Wong, Appl. Phys. Lett. 95, 071910 (2009).
19. M. Hansen and K. Anderko, Constitution of Binary Alloys, 2nd ed. ( Genium Publishing Company, Schenectady, NY, 1985) pp. 544 and 776–777.
20. P. Nath and K. L. Chopra, Phys. Rev. 10(8), 34123417 (1974).
21. S.-M. Lee and D. G. Cahill, J. Appl. Phys. 81(6), 25902595 (1997).
22. L. La Spina, A. W. van Herwaarden, H. Schellevis, W. H. A. Wien, N. Nenadovic, and L. K. Nanver, J. Microelectromech. Syst. 16(3), 675683 (2007).
23. R. Endo, M. Shima, and M. Susa, Int. J. Thermophys. 31, 19912003 (2010).
24. R. Wei, S. Song, K. Yang, Y. Cui, Y. Peng, X. Chen, X. Hu, and Xi. Xu, J. Appl. Phys. 113, 053503 (2013).
25. C. F. Campbell and D. C. Dumka, IEEE MTT-S Int. Microwave Symp. Dig. 2010, 145148.
26. Fabricated to a Northrop Grumman Electronic Systems design by a commercial GaAs foundry.
27. M. Parlak and J. F. Buckwalter, IEEE Compound Semiconductor Integrated Circuit Symposium ( IEEE, 2011), pp.14.
28. SPDT, High Power, RF-MEMS Switch, DC to 40 GHz, RMSW220HP Product Datasheet, Radant MEMS.
29. T. Boles, J. Brogle, D. Hoag, and D. Curcio, IEEE International Conference on Microwaves, Communications, Antennas and Electronics Systems (COMCAS) ( IEEE, 2011), pp.15.

Data & Media loading...


Article metrics loading...



A high performance RF (radio-frequency) switch based on the phase change effect in germanium-telluride (GeTe) is described. Thermal pulses applied to a separate independent thin film heating element for 0.1–1.5 s toggles the switch in a latching fashion. Being non-volatile, no power is required to hold the switch in the on- or off-state. State-of-the-art solid-state RF switches currently in use have an on-state loss of 1 dB; here, we demonstrate an inline phase change switch with a low on-state resistance showing over a frequency range of 0-40 GHz an insertion loss of just 0.1–0.24 dB.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd