Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/105/1/10.1063/1.4885761
1.
1. S.-W. Hwang, H. Tao, D.-H. Kim, H. Cheng, J.-K. Song, E. Rill, M. A. Brenckle, B. Panilaitis, S. M. Won, Y.-S. Kim, Y. M. Song, K. J. Yu, A. Ameen, R. Li, Y. Su, M. Yang, D. L. Kaplan, M. R. Zakin, M. J. Slepian, Y. Huang, F. G. Omenetto, and J. A. Rogers, Science 337, 1640 (2012).
http://dx.doi.org/10.1126/science.1226325
2.
2. S.-W. Hwang, D.-H. Kim, H. Tao, T.-i. Kim, S. Kim, K. J. Yu, B. Panilaitis, J.-W. Jeong, J.-K. Song, F. G. Omenetto, and J. A. Rogers, Adv. Funct. Mater. 23, 4087 (2013).
http://dx.doi.org/10.1002/adfm.201300127
3.
3. S.-W. Hwang, X. Huang, J.-H. Seo, J.-K. Song, S. Kim, S. Hage-Ali, H.-J. Chung, H. Tao, F. G. Omenetto, Z. Ma, and J. A. Rogers, Adv. Mater. 25, 3526 (2013).
http://dx.doi.org/10.1002/adma.201300920
4.
4. S.-W. Hwang, G. Park, H. Cheng, J.-K. Song, S.-K. Kang, L. Yin, J.-H. Kim, F. G. Omenetto, Y. Huang, K.-M. Lee, and J. A. Rogers, Adv. Mater. 26, 1992 (2014).
http://dx.doi.org/10.1002/adma.201304821
5.
5. L. Yin, H. Cheng, S. Mao, R. Haasch, Y. Liu, X. Xie, S.-W. Hwang, H. Jain, S.-K. Kang, Y. Su, R. Li, Y. Huang, and J. A. Rogers, Adv. Funct. Mater. 24, 645 (2014).
http://dx.doi.org/10.1002/adfm.201301847
6.
6. C. Dagdeviren, S.-W. Hwang, Y. Su, S. Kim, H. Cheng, O. Gur, R. Haney, F. G. Omenetto, Y. Huang, and J. A. Rogers, Small 9, 3398 (2013).
http://dx.doi.org/10.1002/smll.201300146
7.
7. C. J. Bettinger and Z. Bao, Adv. Mater. 22, 651 (2010).
http://dx.doi.org/10.1002/adma.200902322
8.
8. C. Wang, K. Takei, T. Takahashi, and A. Javey, Chem Soc. Rev. 42, 2592 (2013).
http://dx.doi.org/10.1039/c2cs35325c
9.
9. H. Wang, P. Wei, Y. Li, J. Han, H. R. Lee, B. D. Naab, N. Liu, C. Wang, E. Adijanto, B. C.-K. Tee, S. Morishita, Q. Li, Y. Gao, Y. Cui, and Z. Bao, Proc. Natl. Acad. Sci. U.S.A. 111, 4776 (2014).
http://dx.doi.org/10.1073/pnas.1320045111
10.
10. C. Wang, J.-C. Chien, K. Takei, T. Takahashi, J. Nah, A. M. Niknejad, and A. Javey, Nano Lett. 12, 1527 (2012).
http://dx.doi.org/10.1021/nl2043375
11.
11. S. H. Han, S. H. Cho, J. H. Kim, J. W. Choi, J. Jang, and M. H. Oh, Appl. Phys. Lett. 89, 093504 (2006).
http://dx.doi.org/10.1063/1.2338526
12.
12. C. H. Lee, D. R. Kim, and X. Zheng, Nano Lett. 11, 3435 (2011).
http://dx.doi.org/10.1021/nl201901z
13.
13. D. Estrada, S. Dutta, A. Liao, and E. Pop, Nanotechnology 21, 085702 (2010).
http://dx.doi.org/10.1088/0957-4484/21/8/085702
14.
14. S. H. Jin, A. E. Islam, T.-l. Kim, J. Kim, M. A. Alam, and J. A. Rogers, Adv. Funct. Mater. 22, 2276 (2012).
http://dx.doi.org/10.1002/adfm.201102814
15.
15. J. Zaumseil, K. W. Baldwin, and J. A. Rogers, J. Appl. Phys. 93, 6117 (2003).
http://dx.doi.org/10.1063/1.1568157
16.
16. Q. Cao, S. J. Han, G. S. Tulevski, A. D. Franklin, and W. Haensch, ACS Nano 6, 6471 (2012).
http://dx.doi.org/10.1021/nn302185d
17.
17. S. Salamat, X. Ho, J. A. Rogers, and M. A. Alam, IEEE Trans. Nanotechnol. 10, 439 (2011).
http://dx.doi.org/10.1109/TNANO.2010.2046674
18.
18. Q. Cao, M. Xia, C. Kocabas, M. Shim, J. A. Rogers, and S. V. Rotkin, Appl. Phys. Lett. 90, 023516 (2007).
http://dx.doi.org/10.1063/1.2431465
19.
19. S. H. Jin, S. N. Dunham, J. Song, X. Xie, J. Kim, C. Lu, A. Islam, F. Du, J. Kim, J. Felts, Y. Li, F. Xiong, M. A. Wahab, M. Menon, E. Cho, K. L. Gross, D. J. Lee, H. U. Chung, E. Pop, M. A. Alam, W. P. King, Y. Huang, and J. A. Rogers, Nat. Nanotechnol. 8, 347 (2013).
http://dx.doi.org/10.1038/nnano.2013.56
20.
20. S.-M. Kang and Y. Leblebici, CMOS Digital Integrated Circuits: Analysis and Design ( McGraw-Hill companies, Inc., 1996), Chap. 9, p. 340.
21.
21. J. Millman and A. Grabel, Microelectronics, 2nd ed. ( McGraw-Hill, Inc., 1987), Chap. 6, p. 233.
http://aip.metastore.ingenta.com/content/aip/journal/apl/105/1/10.1063/1.4885761
Loading
/content/aip/journal/apl/105/1/10.1063/1.4885761
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/105/1/10.1063/1.4885761
2014-07-08
2016-09-25

Abstract

This paper presents materials, device designs, and physical/electrical characteristics of a form of nanotube electronics that is physically transient, in the sense that all constituent elements dissolve and/or disperse upon immersion into water. Studies of contact effects illustrate the ability to use water soluble metals such as magnesium for source/drain contacts in nanotube based field effect transistors. High mobilities and on/off ratios in transistors that use molybdenum, silicon nitride, and silicon oxide enable full swing characteristics for inverters at low voltages (∼5 V) and with high gains (∼30). Dissolution/disintegration tests of such systems on water soluble sheets of polyvinyl alcohol demonstrate physical transience within 30 min.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/105/1/1.4885761.html;jsessionid=Zh-xMIPJ6uwWHEuPofyFgoHr.x-aip-live-03?itemId=/content/aip/journal/apl/105/1/10.1063/1.4885761&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/105/1/10.1063/1.4885761&pageURL=http://scitation.aip.org/content/aip/journal/apl/105/1/10.1063/1.4885761'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,