Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. A. D. Pryamikov, A. F. Kosolapov, V. G. Plotnichenko, and E. M. Dianov, Transmission of CO2 Laser Radiation Through Glass Hollow Core Microstructured Fibers, CO2 Laser - Optimisation and Application, edited by D. C. Dumitras ( InTech, 2012).
2. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, Nature 420, 650 (2002).
3. P. Patimisco, V. Spagnolo, M. S. Vitiello, G. Scamarcio, C. M. Bledt, and J. A. Harrington, Sensors 13, 1329 (2013).
4. R. Yang, K. H. Gao, L. M. Wei, X. Z. Liu, G. J. Hu, G. L. Yu, T. Lin, S. L. Guo, Y. F. Wei, J. R. Yang, L. He, N. Dai, J. H. Chu, and D. G. Austing, Appl. Phys. Lett. 99, 042103 (2011).
5. A. Hongo, K. I. Morosawa, T. Shiota, K. Suzukik, S. Iwasaki, and M. Miyagi, Appl. Phys. Lett. 58, 1582 (1991).
6. U. Gal, J. Harrington, M. Ben-David, C. Bledt, N. Syzonenko, and I. Gannot, Appl. Opt. 49, 4700 (2010).
7. Y. Matsuura and M. Miyagi, Appl. Phys. Lett. 61, 1622 (1992).
8. I. Shavrin, S. Novotny, A. Shevchenko, and H. Ludvigsen, Appl. Phys. Lett. 100, 051106 (2012).
9. C. C. Gregory and J. A. Harrington, Appl. Opt. 32, 5302 (1993).
10. B. Bowden, J. A. Harrington, and O. Mitrofanov, Appl. Phys. Lett. 93, 181104 (2008).
11. K. D. Laakmann and P. Laakmann, “ Hollow lightpipe using a low refractive index inner layer,” U.S. patent 4,805,987 (21 February 1989).
12. C. B. Jing, C. J. Zhang, Y. Li, Y. W. Shi, and J. H. Chu, Appl. Phys. Lett. 99, 161107 (2011).
13. T. Hidaka, T. Morikawa, and J. Shimada, J. Appl. Phys. 52, 4467 (1981).
14. T. Hidaka, J. Appl. Phys. 53, 5484 (1982).
15. S. J. Saggese and J. A. Harrington, Opt. Mater. 2, 119 (1993).
16. M. Miyagi, A. Hongo, Y. Aizawa, and S. Kawakami, Appl. Phys. Lett. 43, 430 (1983).
17. K. Iwai, A. Hongo, H. Takaku, M. Miyagi, J. Ishiyama, X. X. Wu, Y. W. Shi, and Y. Matsuura, Appl. Opt. 48, 6207 (2009).
18. A. Hongo, S. Sato, A. Hattori, K. Iwai, T. Hiroyuki, and M. Miyagi, Appl. Opt. 51, 1 (2012).
19. A. Wilk, J. C. Carter, M. Chrisp, A. M. Manuel, P. Mirkarimi, J. B. Alameda, and B. Mizaikoff, Anal. Chem. 85, 11205 (2013).
20. C. B. Jing, W. Bai, Z. G. Hu, P. X. Yang, A. Y. Liu, Z. Hu, P. Yang, A. Liu, F. T. Lin, Y. W. Shi, and J. H. Chu, Proc. SPIE 8938, 89380N (2014).
21. D. Su, S. Somkuarnpanit, D. R. Hall, and D. C. Jones, Appl. Opt. 35, 4787 (1996).
22. C. B. Jing, J. X. Hou, and X. G. Xu, Opt. Mater. 30, 857 (2008).
23. C. B. Jing, W. Sun, W. Wang, Y. Li, and J. H. Chu, J. Cryst. Growth 338, 195 (2012).

Data & Media loading...


Article metrics loading...



A durable metallic attenuated total reflection (ATR) hollow fiber (bore size: 1.45 mm, wall thickness: 50 m) was designed and fabricated based on a nickel capillary tube and hexagonal germanium dioxide (GeO). The anomalous dispersion of the hexagonal GeO layer grown inside a nickel tube achieves low-loss light transmission at two peak-power wavelengths for CO laser devices (10.2 and 10.6 m). An 11–28 W, 10.2 or 10.6 m CO laser power was steadily delivered via a fiber elastically bent from 0° to 90° (radius: 45 cm) for over 40 min (transmission loss: 0.22 to 4.2 dB/m). Theoretically fitting the measured temperatures showed that front-end clipping caused greater thermal loading than the distributed mode absorption. The maximum external temperature of a nickel ATR fiber is much lower than that of a silica glass ATR fiber owing to their different heat dissipation abilities. The HE mode purity of the output beam profiles decreased from 90.3% to 44.7% as the bending angle increased from 0° to 90°. Large core sizes and wall roughnesses (scattering loss 0.04 dB/m) contributed to mode mixing and excess losses that were above the value predicted by the classical Marcatili and Schmeltzer equation (0.024–0.037 dB/m).


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd