Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/105/1/10.1063/1.4887002
1.
1. A. D. Pryamikov, A. F. Kosolapov, V. G. Plotnichenko, and E. M. Dianov, Transmission of CO2 Laser Radiation Through Glass Hollow Core Microstructured Fibers, CO2 Laser - Optimisation and Application, edited by D. C. Dumitras ( InTech, 2012).
2.
2. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, Nature 420, 650 (2002).
http://dx.doi.org/10.1038/nature01275
3.
3. P. Patimisco, V. Spagnolo, M. S. Vitiello, G. Scamarcio, C. M. Bledt, and J. A. Harrington, Sensors 13, 1329 (2013).
http://dx.doi.org/10.3390/s130101329
4.
4. R. Yang, K. H. Gao, L. M. Wei, X. Z. Liu, G. J. Hu, G. L. Yu, T. Lin, S. L. Guo, Y. F. Wei, J. R. Yang, L. He, N. Dai, J. H. Chu, and D. G. Austing, Appl. Phys. Lett. 99, 042103 (2011).
http://dx.doi.org/10.1063/1.3615303
5.
5. A. Hongo, K. I. Morosawa, T. Shiota, K. Suzukik, S. Iwasaki, and M. Miyagi, Appl. Phys. Lett. 58, 1582 (1991).
http://dx.doi.org/10.1063/1.105131
6.
6. U. Gal, J. Harrington, M. Ben-David, C. Bledt, N. Syzonenko, and I. Gannot, Appl. Opt. 49, 4700 (2010).
http://dx.doi.org/10.1364/AO.49.004700
7.
7. Y. Matsuura and M. Miyagi, Appl. Phys. Lett. 61, 1622 (1992).
http://dx.doi.org/10.1063/1.107513
8.
8. I. Shavrin, S. Novotny, A. Shevchenko, and H. Ludvigsen, Appl. Phys. Lett. 100, 051106 (2012).
http://dx.doi.org/10.1063/1.3681171
9.
9. C. C. Gregory and J. A. Harrington, Appl. Opt. 32, 5302 (1993).
http://dx.doi.org/10.1364/AO.32.005302
10.
10. B. Bowden, J. A. Harrington, and O. Mitrofanov, Appl. Phys. Lett. 93, 181104 (2008).
http://dx.doi.org/10.1063/1.3013585
11.
11. K. D. Laakmann and P. Laakmann, “ Hollow lightpipe using a low refractive index inner layer,” U.S. patent 4,805,987 (21 February 1989).
12.
12. C. B. Jing, C. J. Zhang, Y. Li, Y. W. Shi, and J. H. Chu, Appl. Phys. Lett. 99, 161107 (2011).
http://dx.doi.org/10.1063/1.3653470
13.
13. T. Hidaka, T. Morikawa, and J. Shimada, J. Appl. Phys. 52, 4467 (1981).
http://dx.doi.org/10.1063/1.329373
14.
14. T. Hidaka, J. Appl. Phys. 53, 5484 (1982).
http://dx.doi.org/10.1063/1.331482
15.
15. S. J. Saggese and J. A. Harrington, Opt. Mater. 2, 119 (1993).
http://dx.doi.org/10.1016/0925-3467(93)90003-J
16.
16. M. Miyagi, A. Hongo, Y. Aizawa, and S. Kawakami, Appl. Phys. Lett. 43, 430 (1983).
http://dx.doi.org/10.1063/1.94377
17.
17. K. Iwai, A. Hongo, H. Takaku, M. Miyagi, J. Ishiyama, X. X. Wu, Y. W. Shi, and Y. Matsuura, Appl. Opt. 48, 6207 (2009).
http://dx.doi.org/10.1364/AO.48.006207
18.
18. A. Hongo, S. Sato, A. Hattori, K. Iwai, T. Hiroyuki, and M. Miyagi, Appl. Opt. 51, 1 (2012).
http://dx.doi.org/10.1364/AO.51.000001
19.
19. A. Wilk, J. C. Carter, M. Chrisp, A. M. Manuel, P. Mirkarimi, J. B. Alameda, and B. Mizaikoff, Anal. Chem. 85, 11205 (2013).
http://dx.doi.org/10.1021/ac402391m
20.
20. C. B. Jing, W. Bai, Z. G. Hu, P. X. Yang, A. Y. Liu, Z. Hu, P. Yang, A. Liu, F. T. Lin, Y. W. Shi, and J. H. Chu, Proc. SPIE 8938, 89380N (2014).
http://dx.doi.org/10.1117/12.2036161
21.
21. D. Su, S. Somkuarnpanit, D. R. Hall, and D. C. Jones, Appl. Opt. 35, 4787 (1996).
http://dx.doi.org/10.1364/AO.35.004787
22.
22. C. B. Jing, J. X. Hou, and X. G. Xu, Opt. Mater. 30, 857 (2008).
http://dx.doi.org/10.1016/j.optmat.2007.03.006
23.
23. C. B. Jing, W. Sun, W. Wang, Y. Li, and J. H. Chu, J. Cryst. Growth 338, 195 (2012).
http://dx.doi.org/10.1016/j.jcrysgro.2011.11.024
http://aip.metastore.ingenta.com/content/aip/journal/apl/105/1/10.1063/1.4887002
Loading
/content/aip/journal/apl/105/1/10.1063/1.4887002
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/105/1/10.1063/1.4887002
2014-07-07
2016-09-27

Abstract

A durable metallic attenuated total reflection (ATR) hollow fiber (bore size: 1.45 mm, wall thickness: 50 m) was designed and fabricated based on a nickel capillary tube and hexagonal germanium dioxide (GeO). The anomalous dispersion of the hexagonal GeO layer grown inside a nickel tube achieves low-loss light transmission at two peak-power wavelengths for CO laser devices (10.2 and 10.6 m). An 11–28 W, 10.2 or 10.6 m CO laser power was steadily delivered via a fiber elastically bent from 0° to 90° (radius: 45 cm) for over 40 min (transmission loss: 0.22 to 4.2 dB/m). Theoretically fitting the measured temperatures showed that front-end clipping caused greater thermal loading than the distributed mode absorption. The maximum external temperature of a nickel ATR fiber is much lower than that of a silica glass ATR fiber owing to their different heat dissipation abilities. The HE mode purity of the output beam profiles decreased from 90.3% to 44.7% as the bending angle increased from 0° to 90°. Large core sizes and wall roughnesses (scattering loss 0.04 dB/m) contributed to mode mixing and excess losses that were above the value predicted by the classical Marcatili and Schmeltzer equation (0.024–0.037 dB/m).

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/105/1/1.4887002.html;jsessionid=Qep0yfqpt4nuLNW0STv945Hu.x-aip-live-02?itemId=/content/aip/journal/apl/105/1/10.1063/1.4887002&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/105/1/10.1063/1.4887002&pageURL=http://scitation.aip.org/content/aip/journal/apl/105/1/10.1063/1.4887002'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,