Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awschalom, Nature 479, 84 (2011).
2. A. L. Falk, B. B. Buckley, G. Calusine, W. F. Koehl, V. V. Dobrovitski, A. Politi, C. A. Zorman, P. X.-L. Feng, and D. D. Awschalom, Nat. Commun. 4, 1819 (2013).
3.Properties of Silicon Carbide, edited by G. L. Harris ( INSPEC, London, 1995).
4. J. R. Weber, W. F. Koehl, J. B. Varley, A. Janotti, B. B. Buckley, C. G. Van de Walle, and D. D. Awschalom, Proc. Natl. Acad. Sci. U. S. A. 107, 85138518 (2010).
5.Process Technology for Silicon Carbide Devices, edited by C. M. Zetterling ( Institution of Electrical Engineers, 2002).
6. F. Fuchs, V. A. Soltamov, S. Väth, P. G. Baranov, E. N. Mokhov, G. V. Astakhov, and V. Dyakonov, Sci. Rep. 3, 1637 (2013).
7. S. Castelletto, B. C. Johnson, V. Ivády, N. Stavrias, T. Umeda, A. Gali, and T. Ohshima, Nature Mater. 13, 151156 (2014).
8. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, Science 284(5421), 18191821 (1999).
9. P. Ovartchaiyapong, K. W. Lee, B. A. Myers, and A. C. Bleszynski Jayich, e-print arXiv:1403.4173.
10. M. Loncar and A. Faraon, MRS Bull. 38, 144 (2013).
11. J. Hagemeier, C. Bonato, T. Truong, H. Kim, G. Beirne, M. Bakker, M. van Exter, Y. Luo, P. Petroff, and D. Bouwmeester, Opt. Express 20, 2471424726 (2012).
12. A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, Phys. Rev. Lett. 109, 033604 (2012).
13. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, Nature 432, 200 (2004).
14. R. Schirhagl, K. Chang, M. Loretz, and C. L. Degen, Annu. Rev. Phys. Chem. 65, 83105 (2014).
15. B.-S. Song, S. Yamada, T. Asano, and S. Noda, Opt. Express 19, 11084 (2011).
16. M. Radulaski, T. M. Babinec, S. Buckley, A. Rundquist, J. Provine, K. Alassaad, G. Ferro, and J. Vučković, Opt. Express 21(26), 3262332629 (2013).
17. X. Lu, J. Y. Lee, P. X.-L. Feng, and Q. Lin, Opt. Lett. 38, 13041306 (2013).
18. N. T. Son, E. Sörman, W. M. Chen, M. Singh, C. Hallin, O. Kordina, B. Monemar, E. Janzén, and J. L. Lindström, J. Appl. Phys. 79, 3784 (1996).
19. V. Bratus, R. Melnik, S. Okulov, V. Rodionov, B. Shanina, and M. Smoliy, Physica B: Condensed Matter 404, 47394741 (2009).
20. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, Comput. Phys. Commun. 181(3), 687702 (2010).
21. S. Tomljenovic-Hanic, M. J. Steel, C. M. de Sterke, and J. Salzman, Opt. Express 14, 3556 (2006).
22. T. Akahane, T. Asano, B.-S. Song, and S. Noda, Nature 425, 944 (2003).
23. L. C. Andreani, D. Gerace, and M. Agio, Photonics Nanostruct. Fundam. Appl. 2, 103 (2004).
24.See supplementary material at for details.[Supplementary Material]
25. P. A. Khan, B. Roof, L. Zhou, and I. Asesida, J. Electron. Mater. 30, 212 (2001).
26. S. C. Ahn, S. Y. Hang, J. L. Lee, J. H. Moon, and B. T. Lee, Met. Mater. Int. 10, 103 (2004).
27. M. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frédéric, P. J. Poole, G. C. Aers, and R. Williams, Appl. Phys. Lett. 87, 221110 (2005).
28. D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučković, Nature 450, 857 (2007).
29. M. Bosi, G. Attolini, M. Negri, C. Frigeri, E. Buffagni, C. Ferrari, T. Rimoldi, L. Cristofolini, L. Aversa, R. Tatti, and R. Verucchi, J. Cryst. Growth 383, 8494 (2013).
30. J. Cardenas, M. Zhang, C. T. Phare, S. Y. Shah, C. B. Poitras, B. Guha, and M. Lipson, Opt. Express 21(14), 1688216887 (2013).
31. T. Asano, B. S. Song, and S. Noda, Opt. Express 14, 1996 (2006).
32. M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O'Faolain, and T. F. Krauss, Appl. Phys. Lett. 94, 071101 (2009).
33. Y. Tanaka, T. Asano, Y. Akahane, B. S. Song, and S. Noda, Appl. Phys. Lett. 82, 16611663 (2003).
34. L. Hiller, T. Stauden, R. M. Kemper, J. K. N. Lindner, D. J. As, and J. Pezoldt, Proc. Mater. Sci. Forum 717–720, 901 (2012).
35. R. Bose, D. Sridharan, G. S. Solomon, and E. Waks, Appl. Phys. Lett. 98, 121109 (2011).
36. K. Rivoire, Z. Lin, F. Hatami, W. T. Masselink, and J. Vuckovic, Opt. Express 17, 2260922615 (2009).
37. P. M. Lundquist, H. C. Ong, W. P. Lin, R. P. H. Chang, J. B. Ketterson, and G. K. Wong, Appl. Phys. Lett. 67, 2919 (1995).
38. S. Yamada, B. S. Song, S. Jeon, J. Upham, Y. Tanaka, T. Asano, and S. Noda, Opt. Lett. 39, 1768 (2014).
39. M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, Nat. Photonics 4, 786791 (2010).

Data & Media loading...


Article metrics loading...



The recent discovery of color centers with optically addressable spin states in 3C silicon carbide (SiC) similar to the negatively charged nitrogen vacancy center in diamond has the potential to enable the integration of defect qubits into established wafer scale device architectures for quantum information and sensing applications. Here, we demonstrate the design, fabrication, and characterization of photonic crystal cavities in 3C SiC films with incorporated ensembles of color centers and quality factor (Q) to mode volume ratios similar to those achieved in diamond. Simulations show that optimized H1 and L3 structures exhibit Q's as high as 45 000 and mode volumes of approximately . We utilize the internal color centers as a source of broadband excitation to characterize fabricated structures with resonances tuned to the color center zero phonon line and observe Q's in the range of 900–1500 with narrowband photoluminescence collection enhanced by up to a factor of 10. By comparing the Q factors observed for different geometries with finite-difference time-domain simulations, we find evidence that nonvertical sidewalls are likely the dominant source of discrepancies between our simulated and measured Q factors. These results indicate that defect qubits in 3C SiC thin films show clear promise as a simple, scalable platform for interfacing defect qubits with photonic, optoelectronic, and optomechanical devices.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd