Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/105/10/10.1063/1.4895070
1.
1. S. B. Choe, Y. Acremann, A. Scholl, A. Bauer, A. Doran, J. Stöhr, and H. A. Padmore, Science 304, 420 (2004).
http://dx.doi.org/10.1126/science.1095068
2.
2. S. Jain, V. Novosad, F. Y. Fradin, J. E. Pearson, V. Tiberkevich, A. N. Slavin, and S. D. Bader, Nat. Commun. 3, 1330 (2012).
http://dx.doi.org/10.1038/ncomms2331
3.
3. T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, and T. Ono, Science 289, 930 (2000).
http://dx.doi.org/10.1126/science.289.5481.930
4.
4. X. M. Cheng and D. J. Keavney, Rep. Prog. Phys. 75, 026501 (2012).
http://dx.doi.org/10.1088/0034-4885/75/2/026501
5.
5. X. M. Cheng, K. S. Buchanan, R. Divan, K. Y. Guslienko, and D. J. Keavney, Phys. Rev. B 79, 172411 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.172411
6.
6. D. J. Keavney, X. M. Cheng, and K. S. Buchanan, Appl. Phys. Lett. 94, 172506 (2009).
http://dx.doi.org/10.1063/1.3111430
7.
7. K. Y. Guslienko, X. F. Han, D. J. Keavney, R. Divan, and S. D. Bader, Phys. Rev. Lett. 96, 067205 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.067205
8.
8. V. Novosad, F. Y. Fradin, P. E. Roy, K. S. Buchanan, K. Yu. Guslienko, and S. D. Bader, Phys. Rev. B 72, 024455 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.024455
9.
9. A. A. Award, G. R. Aranda, D. Dieleman, K. Y. Guslienko, G. N. Kakazei, B. A. lvanov, and F. G. Aliev, Appl. Phys. Lett. 97, 132501 (2010).
http://dx.doi.org/10.1063/1.3495774
10.
10. O. V. Sukhostavets, J. González, and K. Y. Guslienko, Phys. Rev. B 87, 094402 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.094402
11.
11. A. Vogel, A. Drews, T. Kamionka, M. Bolte, and G. Meier, Phys. Rev. Lett. 105, 037201 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.037201
12.
12. A. Vogel, T. Kamionka, M. Martens, A. Drews, K. W. Chou, T. Tyliszczak, H. Stoll, B. Van Waeyenberge, and G. Meier, Phys. Rev. Lett. 106, 137201 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.137201
13.
13. S. Sugimoto, Y. Fukuma, S. Kasai, T. Kimura, A. Barman, and Y. Otani, Phys. Rev. Lett. 106, 197203 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.197203
14.
14. J. Shibata, K. Shigeto, and Y. Otani, Phys. Rev. B 67, 224404 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.224404
15.
15. K.-S. Lee and S.-K. Kim, Phys. Rev. B 78, 014405 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.014405
16.
16. A. Vogel, M. Martens, M. Weigand, and G. Meier, Appl. Phys. Lett. 99, 042506 (2011).
http://dx.doi.org/10.1063/1.3614551
17.
17. A. Barman, S. Barman, T. Kimura, Y. Fukuma, and Y. Otani, J. Phys. D: Appl. Phys. 43, 422001 (2010).
http://dx.doi.org/10.1088/0022-3727/43/42/422001
18.
18. V. Rose, K. Buchanan, S.-H. Chung, M. Grimsditch, V. Metlushko, A. Hoffmann, V. Novosad, S. D. Bader, and H. Ibach, Phys. Rev. B 73, 094442 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.094442
19.
19. M. V. Sapozhnikov, O. L. Ermolaeva, B. G. Gribkov, I. M. Nefedov, I. R. Karetnikova, S. A. Gusev, V. V. Rogov, B. B. Troitskii, and L. V. Khokhlova, Phys. Rev. B 85, 054402 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.054402
20.
20. J. Donahue and D. G. Porter, in Interagency Report NIST IR 6376, Gaithersburg, MD, 1999.
21.
21. M. Asmat-Uceda, X. M. Cheng, X. Wang, D. J. Clarke, O. Tchernyshyov, and K. S. Buchanan, “ Micromagnetic simulations of the dynamics of three interacting magnetic vortices in a triangular arrangement,” Phys. Rev. B (submitted).
22.
22. A. A. Thiele, Phys. Rev. Lett. 30, 230 (1973).
http://dx.doi.org/10.1103/PhysRevLett.30.230
23.
23. The theory lines in Figs. 4(a) and 4(b) were obtained by fitting the theory to the simulation results using one adjustable scaling parameter C that is a multiplier for the R/D scale. C depends on the relationship between the disk magnetic moment and the core position, which depends weakly on geometry. Using fits to the core displacement vs. Ms from single vortex simulations, we estimate that a scaled value of C = 2.51 should be used in the theory described in Ref. 21 to obtain f/f0 for the experimental geometry. The change in f/f0 due to this correction is ≤2% for R/D = 0.44.
http://aip.metastore.ingenta.com/content/aip/journal/apl/105/10/10.1063/1.4895070
Loading
/content/aip/journal/apl/105/10/10.1063/1.4895070
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/105/10/10.1063/1.4895070
2014-09-11
2016-09-29

Abstract

The interactions between three magnetic vortices in a planar equilateral triangular arrangement were studied by time-resolved photoemission electron microscopy. The gyrotropic resonance frequencies of the three individual vortices in the tri-disk system are different from one another and also shifted from that of an isolated vortex by as much as 12%. A comparison with analytical calculations and numerical simulations shows that the observed frequency shifts result from the dipolar interaction between the vortices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/105/10/1.4895070.html;jsessionid=wxB9sEG2RKcpdTBLGbqD3ap9.x-aip-live-06?itemId=/content/aip/journal/apl/105/10/10.1063/1.4895070&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/105/10/10.1063/1.4895070&pageURL=http://scitation.aip.org/content/aip/journal/apl/105/10/10.1063/1.4895070'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,