Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/105/10/10.1063/1.4895471
1.
1. W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P.-H. Tan, and G. Eda, ACS Nano 7, 791 (2012).
http://dx.doi.org/10.1021/nn305275h
2.
2. Z. Zhu, Y. Cheng, and U. Schwingenschlögl, Phys. Rev. B 84, 153402 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.153402
3.
3. H. Zeng, G.-B. Liu, J. Dai, Y. Yan, B. Zhu, R. He, L. Xie, S. Xu, X. Chen, W. Yao et al., Sci. Rep. 3, 1608 (2013).
http://dx.doi.org/10.1038/srep01608
4.
4. J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao et al., Nat. Commun. 4, 1474 (2013).
http://dx.doi.org/10.1038/ncomms2498
5.
5. B. Stebe and A. Ainane, Superlattices Microstruct. 5, 545 (1989).
http://dx.doi.org/10.1016/0749-6036(89)90382-0
6.
6. A. Ramasubramaniam, Phys. Rev. B 86, 115409 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.115409
7.
7. A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao et al., Nat. Nanotechnol. 8, 634 (2013).
http://dx.doi.org/10.1038/nnano.2013.151
8.
8. A. Mitioglu, P. Plochocka, J. Jadczak, W. Escoffier, G. Rikken, L. Kulyuk, and D. Maude, Phys. Rev. B 88, 245403 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.245403
9.
9. K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, Nat. Mater. 12, 207 (2013).
http://dx.doi.org/10.1038/nmat3505
10.
10. G. Wang, L. Bouet, D. Lagarde, M. Vidal, A. Balocchi, T. Amand, X. Marie, and B. Urbaszek, Phys. Rev. B 90, 075413 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.075413
11.
11. S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J. S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou et al., Sci. Rep. 3, 2657 (2013).
http://dx.doi.org/10.1038/srep02657
12.
12. H. Sahin, S. Tongay, S. Horzum, W. Fan, J. Zhou, J. Li, J. Wu, and F. Peeters, Phys. Rev. B 87, 165409 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.165409
13.
13. A. Thilagam, J. Appl. Phys. 116, 053523 (2014).
http://dx.doi.org/10.1063/1.4892488
14.
14. J. S. Ross, P. Klement, A. M. Jones, N. J. Ghimire, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, D. H. Cobden, and X. Xu, Nat. Nanotechnol. 9, 268 (2014).
http://dx.doi.org/10.1038/nnano.2014.26
15.
15. K. F. Mak, K. He, J. Shan, and T. F. Heinz, Nat. Nanotechnol. 7, 494 (2012).
http://dx.doi.org/10.1038/nnano.2012.96
16.
16. D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, Phys. Rev. Lett. 108, 196802 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.196802
17.
17. H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, Nat. Nanotechnol. 7, 490 (2012).
http://dx.doi.org/10.1038/nnano.2012.95
18.
18. D. Xiao, W. Yao, and Q. Niu, Phys. Rev. Lett. 99, 236809 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.236809
19.
19. W. Yao, D. Xiao, and Q. Niu, Phys. Rev. B 77, 235406 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.235406
20.
20. T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu et al., Nat. Commun. 3, 887 (2012).
http://dx.doi.org/10.1038/ncomms1882
21.
21. D. Lagarde, L. Bouet, X. Marie, C. Zhu, B. Liu, T. Amand, P. Tan, and B. Urbaszek, Phys. Rev. Lett. 112, 047401 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.047401
22.
22. T. Korn, S. Heydrich, M. Hirmer, J. Schmutzler, and C. Schüller, Appl. Phys. Lett. 99, 102109 (2011).
http://dx.doi.org/10.1063/1.3636402
23.
23. H. Shi, R. Yan, S. Bertolazzi, J. Brivio, B. Gao, A. Kis, D. Jena, H. G. Xing, and L. Huang, ACS Nano 7, 1072 (2014).
http://dx.doi.org/10.1021/nn303973r
24.
24. R. Wang, B. A. Ruzicka, N. Kumar, M. Z. Bellus, H.-Y. Chiu, and H. Zhao, Phys. Rev. B 86, 045406 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.045406
25.
25. C. Mai, A. Barrette, Y. Yu, Y. Semenov, K. W. Kim, L. Cao, and K. Gundogdu, Nano Lett. 14, 202 (2013).
http://dx.doi.org/10.1021/nl403742j
26.
26. S. Sim, J. Park, J.-G. Song, C. In, Y.-S. Lee, H. Kim, and H. Choi, Phys. Rev. B 88, 075434 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.075434
27.
27. Q. Wang, S. Ge, X. Li, J. Qiu, Y. Ji, J. Feng, and D. Sun, ACS Nano 7, 11087 (2013).
http://dx.doi.org/10.1021/nn405419h
28.
28. X. Zhang, W. P. Han, J. B. Wu, S. Milana, Y. Lu, Q. Q. Li, A. C. Ferrari, and P. H. Tan, Phys. Rev. B 87, 115413 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.115413
29.
29. P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, J. Börner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan, D. R. Zahn et al., Opt. Express 21, 4908 (2013).
http://dx.doi.org/10.1364/OE.21.004908
30.
30. D. Y. Qiu, H. Felipe, and S. G. Louie, Phys. Rev. Lett. 111, 216805 (2013).
http://dx.doi.org/10.1103/PhysRevLett.111.216805
31.
31. C. Zhang, A. Johnson, C.-L. Hsu, L.-J. Li, and C.-K. Shih, Nano Lett. 14, 2443 (2014).
http://dx.doi.org/10.1021/nl501133c
32.
32. I. Buyanova, W. Chen, G. Pozina, J. Bergman, B. Monemar, H. Xin, and C. Tu, Appl. Phys. Lett. 75, 501 (1999).
http://dx.doi.org/10.1063/1.124429
33.
33. Y.-H. Cho, G. Gainer, A. Fischer, J. Song, S. Keller, U. Mishra, and S. DenBaars, Appl. Phys. Lett. 73, 1370 (1998).
http://dx.doi.org/10.1063/1.122164
34.
34. V. Huard, R. Cox, K. Saminadayar, A. Arnoult, and S. Tatarenko, Phys. Rev. Lett. 84, 187 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.187
35.
35. D. Sanvitto, R. Hogg, A. Shields, D. Whittaker, M. Simmons, D. Ritchie, and M. Pepper, Phys. Rev. B 62, R13294 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.R13294
36.
36. G. Finkelstein, V. Umansky, I. Bar-Joseph, V. Ciulin, S. Haacke, J.-D. Ganiere, and B. Deveaud, Phys. Rev. B 58, 12637 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.12637
37.
37. J. Feldmann, G. Peter, E. Göbel, P. Dawson, K. Moore, C. Foxon, and R. Elliott, Phys. Rev. Lett. 60, 243 (1988).
http://dx.doi.org/10.1103/PhysRevLett.60.243.4
38.
38. V. Ciulin, P. Kossacki, S. Haacke, J.-D. Ganiere, B. Deveaud, A. Esser, and T. Wojtowicz, Phys. Rev. B 62, R16310 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.R16310
39.
39. D. Citrin, Phys. Rev. B 47, 3832 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.3832
http://aip.metastore.ingenta.com/content/aip/journal/apl/105/10/10.1063/1.4895471
Loading
/content/aip/journal/apl/105/10/10.1063/1.4895471
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/105/10/10.1063/1.4895471
2014-09-09
2016-09-29

Abstract

In this work, comprehensive temperature and excitation power dependent photoluminescence and time-resolved photoluminescence studies are carried out on monolayer WSe to reveal its properties of exciton emissions and related excitonic dynamics. Competitions between the localized and delocalized exciton emissions, as well as the exciton and trion emissions are observed, respectively. These competitions are suggested to be responsible for the abnormal temperature and excitation intensity dependent photoluminescence properties. The radiative lifetimes of both excitons and trions exhibit linear dependence on temperature within the temperature regime below 260 K, providing further evidence for two-dimensional nature of monolayer material.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/105/10/1.4895471.html;jsessionid=2GHJ9_elpqz1M6iAHapDTmcF.x-aip-live-06?itemId=/content/aip/journal/apl/105/10/10.1063/1.4895471&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/105/10/10.1063/1.4895471&pageURL=http://scitation.aip.org/content/aip/journal/apl/105/10/10.1063/1.4895471'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,