Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/105/11/10.1063/1.4895930
1.
1. S. Francoeur, M.-J. Seong, A. Mascarenhas, S. Tixier, M. Adamcyk, and T. Tiedje, Appl. Phys. Lett. 82, 3874 (2003).
http://dx.doi.org/10.1063/1.1581983
2.
2. X. Lu, D. A. Beaton, R. B. Lewis, T. Tiedje, and Y. Zhang, Appl. Phys. Lett. 95, 041903 (2009).
http://dx.doi.org/10.1063/1.3191675
3.
3. B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E. C. Young, and T. Tiedje, Phys. Rev. Lett. 97, 067205 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.067205
4.
4. S. K. Das, T. D. Das, S. Dhar, M. de la Mare, and A. Krier, Infrared Phys. Technol. 55, 156 (2012).
http://dx.doi.org/10.1016/j.infrared.2011.11.003
5.
5. Y. Song, S. Wang, I. S. Roy, P. Shi, and A. Hallen, J. Vac. Sci. Technol., B 30, 02B114 (2012).
http://dx.doi.org/10.1116/1.3672025
6.
6. M. K. Rajpalke, W. M. Linhart, M. Birkett, K. M. Yu, D. O. Scanlon, J. Buckeridge, T. S. Jones, M. J. Ashwin, and T. D. Veal, Appl. Phys. Lett. 103, 142106 (2013).
http://dx.doi.org/10.1063/1.4824077
7.
7. M. K. Rajpalke, W. M. Linhart, M. Birkett, K. M. Yu, J. Alaria, J. Kopaczek, R. Kudrawiec, T. S. Jones, M. J. Ashwin, and T. D. Veal, J. Appl. Phys. 116, 043511 (2014).
http://dx.doi.org/10.1063/1.4891217
8.
8. J. Kopaczek, R. Kudrawiec, W. M. Linhart, M. K. Rajpalke, K. M. Yu, T. S. Jones, M. J. Ashwin, J. Misiewicz, and T. D. Veal, Appl. Phys. Lett. 103, 261907 (2013).
http://dx.doi.org/10.1063/1.4858967
9.
9. J. Kopaczek, R. Kudrawiec, W. M. Linhart, M. K. Rajpalke, T. S. Jones, M. J. Ashwin, and T. D. Veal, “ On the nature of low and high energy photoluminescence from GaSb1−xBix with 0 < x < 0.042,” Appl. Phys. Express. (submitted).
10.
10. M. Polak, P. Scharoch, R. Kudrawiec, J. Kopaczek, M. Winiarski, W. Linhart, M. Rajpalke, K. M. Yu, T. S. Jones, M. J. Ashwin, and T. D. Veal, J. Phys. D: Appl. Phys. 47, 355107 (2014).
http://dx.doi.org/10.1088/0022-3727/47/35/355107
11.
11. Y. Hayakawa, M. Ando, T. Matsuyama, E. Hamakawa, T. Koyama, S. Adachi, K. Takahashi, V. G. Lifshits, and M. Kumagawa, J. Appl. Phys. 76, 858 (1994).
http://dx.doi.org/10.1063/1.357761
12.
12. Q. Du, J. Alperin, and W. I. Wang, J. Cryst. Growth 175–176, 849 (1997).
http://dx.doi.org/10.1016/S0022-0248(96)01231-6
13.
13. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).
http://dx.doi.org/10.1063/1.1368156
14.
14. L. Buckle, B. R. Bennett, S. Jollands, T. D. Veal, N. R. Wilson, B. N. Murdin, C. F. McConville, and T. Ashley, J. Cryst. Growth 278, 188 (2005).
http://dx.doi.org/10.1016/j.jcrysgro.2004.12.148
15.
15. P. H. Jefferon, T. D. Veal, L. F. J. Piper, B. R. Bennett, B. N. Murdin, L. Buckle, G. W. Smith, and T. Ashley, Appl. Phys. Lett. 89, 111921 (2006).
http://dx.doi.org/10.1063/1.2349832
16.
16. D. Wang, S. P. Svensson, L. Shterengas, G. Belenky, C. S. Kim, I. Vurgaftman, and J. R. Meyer, J. Appl. Phys. 105, 014904 (2009).
http://dx.doi.org/10.1063/1.3055273
17.
17. M. J. Ashwin, T. D. Veal, J. J. Bomphrey, I. R. Dunn, D. Walker, P. A. Thomas, and T. S. Jones, AIP Adv. 1, 032159 (2011).
http://dx.doi.org/10.1063/1.3643259
18.
18. M. J. Ashwin, D. Walker, P. A. Thomas, T. S. Jones, and T. D. Veal, J. Appl. Phys. 113, 033502 (2013).
http://dx.doi.org/10.1063/1.4775745
19.
19. J. J. Mudd, N. J. Kybert, W. M. Linhart, L. Buckle, T. Ashley, P. D. C. King, T. S. Jones, M. J. Ashwin, and T. D. Veal, Appl. Phys. Lett. 103, 042110 (2013).
http://dx.doi.org/10.1063/1.4816519
20.
20. A. Joullié, P. Christol, A. N. Baranov, and A. Vicet, “ Mid-infrared 2–5 μm heterojunction laser diodes” in Solid-State Mid-Infrared Laser Sources, Topics in Applied Physics Vol. 89, edited by I. T. Sorokina and K. L. Vodopyanov ( Springer, 2003), pp. 161.
21.
21. J. J. Lee and M. Razeghi, Opto-Electron. Rev. 6, 25 (1998).
22.
22. Y. Song, S. Wang, I. S. Roy, P. Shi, A. Hallen, and Z. Lai, J. Cryst. Growth 378, 323 (2013).
http://dx.doi.org/10.1016/j.jcrysgro.2012.12.085
23.
23. M. J. Ashwin, R. J. H. Morris, D. Walker, P. A. Thomas, M. G. Dowsett, T. S. Jones, and T. D. Veal, J. Phys. D: Appl. Phys. 46, 264003 (2013).
http://dx.doi.org/10.1088/0022-3727/46/26/264003
24.
24. M. K. Rajpalke, W. M. Linhart, K. M. Yu, J. Alaria, J. J. Bomphrey, T. S. Jones, M. J. Ashwin, and T. D. Veal, “ Bi-induced band gap reduction in epitaxial InSbBi alloys,” Appl. Phys. Lett. (submitted).
25.
25. P. Carrier and S. H. Wei, Phys. Rev. B 70, 035212 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.035212
26.
26. D. E. Aspnes, Surf. Sci. 37, 418 (1973).
http://dx.doi.org/10.1016/0039-6028(73)90337-3
27.
27. R. Kudrawiec, J. Kopaczek, J. Misiewicz, W. Walukiewicz, J. P. Petropoulos, Y. Zhong, P. B. Dongmo, and J. M. O. Zide, J. Appl. Phys. 112, 113508 (2012).
http://dx.doi.org/10.1063/1.4768262
28.
28. Y. P. Varshni, Physica 34, 49 (1967).
http://dx.doi.org/10.1016/0031-8914(67)90062-6
29.
29. S. Logothetidis, M. Cardona, P. Lautenschlager, and M. Garriga, Phys. Rev. B 34, 2458 (1986).
http://dx.doi.org/10.1103/PhysRevB.34.2458
30.
30. P. Lautenschlager, M. Garriga, S. Logothetidis, and M. Cardona, Phys. Rev. B 35, 9174 (1987).
http://dx.doi.org/10.1103/PhysRevB.35.9174
http://aip.metastore.ingenta.com/content/aip/journal/apl/105/11/10.1063/1.4895930
Loading
/content/aip/journal/apl/105/11/10.1063/1.4895930
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/105/11/10.1063/1.4895930
2014-09-16
2016-09-30

Abstract

Molecular beam epitaxy is used to grow Ga InSb Bi (y ≤ 5.5% and x ≤ 2.5%) and Al Ga Sb Bi alloys (y ≤ 6.6% and x ≤ 2.0%). The alloy composition and film thickness are determined by high resolution x-ray diffraction. The band gap of the alloys is determined by photomodulated reflectance (PR) spectroscopy. The band gap energy reduces with increasing In and Bi contents and decreasing Al content. The band gap energy reduction between 15 and 290 K is in the range of 60–75 meV, somewhat lower than the 82 meV for GaSb. The broadening of the band gap-related PR feature is between 16 and 28 meV.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/105/11/1.4895930.html;jsessionid=ycBn27nX-yw4mtDhNzxZwTxJ.x-aip-live-03?itemId=/content/aip/journal/apl/105/11/10.1063/1.4895930&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/105/11/10.1063/1.4895930&pageURL=http://scitation.aip.org/content/aip/journal/apl/105/11/10.1063/1.4895930'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,