Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/105/13/10.1063/1.4896914
1.
1. P. Bleuet, L. Lemelle, R. Tucoulou, P. Gergaud, G. Delette, P. Cloetens, J. Susini, and A. Simionovici, “3D chemical imaging based on a third-generation synchrotron source,” Trends Anal. Chem. 29, 518527 (2010).
http://dx.doi.org/10.1016/j.trac.2010.02.011
2.
2. J.-D. Grunwaldt, S. Hannemann, C. G. Schroer, and A. Baiker, “ 2D-mapping of the catalyst structure inside a catalytic microreactor at work: Partial oxidation of methane over Rh/Al2O3,” J. Phys. Chem. B 110, 86748680 (2006).
http://dx.doi.org/10.1021/jp060371n
3.
3. P. Bleuet, E. Welcomme, E. Dooryhée, J. Susini, J.-L. Hodeau, and P. Walter, “ Probing the structure of heterogeneous diluted materials by diffraction tomography,” Nat. Mater. 7, 468472 (2008).
http://dx.doi.org/10.1038/nmat2168
4.
4. S. Köster and T. Pfohl, “ X-ray studies of biological matter in microfluidic environments,” Mod. Phys. Lett. B 26, 1230018 (2012).
http://dx.doi.org/10.1142/S0217984912300189
5.
5. J.-D. Grunwaldt and C. G. Schroer, “ Hard and soft x-ray microscopy and tomography in catalysis: Bridging the different time and length scales,” Chem. Soc. Rev. 39, 4741 (2010).
http://dx.doi.org/10.1039/c0cs00036a
6.
6. A. Jarre, C. Fuhse, C. Ollinger, J. Seeger, R. Tucoulou, and T. Salditt, Phys. Rev. Lett. 94, 074801 (2005);
http://dx.doi.org/10.1103/PhysRevLett.94.074801
6. H. Mimura, H. Yumoto, S. Matsuyama, Y. Sano, K. Yamamura, Y. Mori, M. Yabashi, Y. Nishino, K. Tamasaku, T. Ishikawa, and K. Yamauchi, Appl. Phys. Lett. 90, 051903 (2007).
http://dx.doi.org/10.1063/1.2436469
7.
7. Y. S. Chu, J. M. Yi, F. De Carlo, Q. Shen, W.-K. Lee, H. J. Wu, C. L. Wang, J. Y. Wang, C. J. Liu, C. H. Wang, S. R. Wu, C. C. Chien, Y. Hwu, A. Tkachuk, W. Yun, M. Feser, K. S. Liang, C. S. Yang, J. H. Je, and G. Margaritondo, Appl. Phys. Lett. 92, 103119 (2008);
http://dx.doi.org/10.1063/1.2857476
7. H. C. Kang, H. Yan, R. P. Winarski, M. V. Holt, J. Maser, C. Liu, R. Conley, S. Vogt, A. T. Macrander, and G. B. Stephenson, Appl. Phys. Lett. 92, 221114 (2008);
http://dx.doi.org/10.1063/1.2912503
7. H. Mimura, S. Handa, T. Kimura, H. Yumoto, D. Yamakawa, H. Yokoyama, S. Matsuyama, K. Inagaki, K. Yamamura, Y. Sano, K. Tamasaku, Y. Nishino, M. Yabashi, T. Ishikawa, and K. Yamauchi, Nat. Phys. 6, 122 (2010);
http://dx.doi.org/10.1038/nphys1457
7. H. Yan, V. Rose, D. Shu, E. Lima, H. C. Kang, R. Conley, C. Liu, N. Jahedi, A. T. Macrander, G. B. Stephenson, M. Holt, Y. S. Chu, M. Lu, and J. Maser, Opt. Express 19, 15069 (2011);
http://dx.doi.org/10.1364/OE.19.015069
7. J. Vila-Comamala, S. Gorelick, E. Färm, C. M. Kewish, A. Diaz, R. Barrett, V. A. Guzenko, M. Ritala, and C. David, Opt. Express 19, 175184 (2011).
http://dx.doi.org/10.1364/OE.19.000175
8.
8. B. Lengeler, C. Schroer, J. Tümmler, B. Benner, M. Richwin, A. Snigirev, I. Snigireva, and M. Drakopoulos, “ Imaging by parabolic refractive lenses in the hard x-ray range,” J. Synchrotron Radiat. 6, 11531167 (1999).
http://dx.doi.org/10.1107/S0909049599009747
9.
9. C. G. Schroer, M. Kuhlmann, U. T. Hunger, T. F. Günzler, O. Kurapova, S. Feste, F. Frehse, B. Lengeler, M. Drakopoulos, A. Somogyi, A. S. Simionovici, A. Snigirev, I. Snigireva, C. Schug, and W. H. Schröder, “ Nanofocusing parabolic refractive x-ray lenses,” Appl. Phys. Lett. 82, 14851487 (2003).
http://dx.doi.org/10.1063/1.1556960
10.
10. C. G. Schroer, O. Kurapova, J. Patommel, P. Boye, J. Feldkamp, B. Lengeler, M. Burghammer, C. Riekel, L. Vincze, A. van der Hart, and M. Küchler, “ Hard x-ray nanoprobe based on refractive x-ray lenses,” Appl. Phys. Lett. 87, 124103 (2005).
http://dx.doi.org/10.1063/1.2053350
11.
11. A. Schropp, R. Hoppe, V. Meier, J. Patommel, F. Seiboth, H. J. Lee, B. Nagler, E. C. Galtier, B. Arnold, U. Zastrau, J. B. Hastings, D. Nilsson, F. Uhlén, U. Vogt, H. M. Hertz, and C. G. Schroer, “ Full spatial characterization of a nanofocused x-ray free-electron laser beam by ptychographic imaging,” Sci. Rep. 3, 1633 (2013).
http://dx.doi.org/10.1038/srep01633
12.
12. B. Nöhammer, J. Hoszowska, A. K. Freund, and C. David, “ Diamond planar refractive lenses for third- and forth-generation X-ray sources,” J. Synchrotron Radiat. 10, 168171 (2003).
http://dx.doi.org/10.1107/S0909049502019532
13.
13. C. G. Schroer, F.-E. Brack, R. Brendler, S. Hönig, R. Hoppe, J. Patommel, S. Ritter, M. Scholz, A. Schropp, F. Seiboth, D. Nilsson, J. Rahomäki, F. Uhlén, U. Vogt, J. Reinhardt, and G. Falkenberg, “ Hard x-ray nanofocusing with refractive x-ray optics: Full beam characterization by ptychographic imaging,” Proc. SPIE 8848, 884807 (2013).
http://dx.doi.org/10.1117/12.2024127
14.
14. Replacing Si in parts by Al2O3 can result in errors in the transmission profile, since the shape was calculated for a single material with uniform refractive power. However, if the deposition is equal on both sides of the lamella and the overall thickness d of the sandwich corresponds to the design thickness (Figs. 3(a)–3(c)), errors in the parabolic transmission profile are negligible and well within manufacturing tolerances.
15.
15. M. Knaut, M. Junige, V. Neumann, H. Wojcik, T. Henke, C. Hossbach, A. Hiess, M. Albert, and J. W. Bartha, “ Atomic layer deposition for high aspect ratio through silicon vias,” Microelectron. Eng. 107, 8083 (2013).
http://dx.doi.org/10.1016/j.mee.2013.01.031
16.
16. M. D. Groner, F. H. Fabreguette, J. W. Elam, and S. M. George, “ Low-temperature Al2O3 atomic layer deposition,” Chem. Mater. 16, 639645 (2004).
http://dx.doi.org/10.1021/cm0304546
17.
17. C. G. Schroer, P. Boye, J. M. Feldkamp, J. Patommel, D. Samberg, A. Schropp, A. Schwab, S. Stephan, G. Falkenberg, G. Wellenreuther, and N. Reimers, “ Hard x-ray nanoprobe at beamline P06 at PETRA III,” Nucl. Instrum. Methods Phys. Res., Sect. A 616, 9397 (2010).
http://dx.doi.org/10.1016/j.nima.2009.10.094
18.
18. P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “ High-resolution scanning x-ray diffraction microscopy,” Science 321, 379382 (2008).
http://dx.doi.org/10.1126/science.1158573
19.
19. A. M. Maiden and J. M. Rodenburg, “ An improved ptychographical phase retrieval algorithm for diffractive imaging,” Ultramicroscopy 109, 12561262 (2009).
http://dx.doi.org/10.1016/j.ultramic.2009.05.012
20.
20. A. Schropp, P. Boye, J. M. Feldkamp, R. Hoppe, J. Patommel, D. Samberg, S. Stephan, K. Giewekemeyer, R. N. Wilke, T. Salditt, J. Gulden, A. P. Mancuso, I. A. Vartanyants, E. Weckert, S. Schöder, M. Burghammer, and C. G. Schroer, “ Hard x-ray nanobeam characterization by coherent diffraction microscopy,” Appl. Phys. Lett. 96, 091102 (2010).
http://dx.doi.org/10.1063/1.3332591
21.
21. D. Pennicard, S. Lange, S. Smoljanin, H. Hirsemann, H. Graafsma, M. Epple, M. Zuvic, M.-O. Lampert, T. Fritzsch, and M. Rothermund, “ The LAMBDA photon-counting pixel detector,” J. Phys.: Conf. Ser. 425, 062010 (2013).
http://dx.doi.org/10.1088/1742-6596/425/6/062010
22.
22. S. Hönig, R. Hoppe, J. Patommel, A. Schropp, S. Stephan, S. Schöder, M. Burghammer, and C. G. Schroer, “ Full optical characterization of coherent x-ray nanobeams by ptychographic imaging,” Opt. Express 19, 1632416329 (2011).
http://dx.doi.org/10.1364/OE.19.016324
23.
23. C. M. Kewish, M. Guizar-Sicairos, C. Liu, J. Qian, B. Shi, C. Benson, A. M. Khounsary, J. Vila-Comamala, O. Bunk, J. R. Fienup, A. T. Macrander, and L. Assoufid, Opt. Express 18, 23420 (2010);
http://dx.doi.org/10.1364/OE.18.023420
23. J. Vila-Comamala, A. Diaz, M. Guizar-Sicairos, A. Mantion, C. M. Kewish, A. Menzel, O. Bunk, and C. David, Opt. Express 19, 21333 (2011).
http://dx.doi.org/10.1364/OE.19.021333
24.
24.See supplementary material at http://dx.doi.org/10.1063/1.4896914 for a 3D rendering of the complex wave field.[Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/apl/105/13/10.1063/1.4896914
Loading
/content/aip/journal/apl/105/13/10.1063/1.4896914
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/105/13/10.1063/1.4896914
2014-10-01
2016-09-28

Abstract

In order to focus light or x rays, the thickness of a refractive lens is typically varied over its aperture. Here, we present a refractive x-ray lens made of lamellae of constant thickness, the refractive lamellar lens. Refractive power is created by a specific bending of the lamellae rather than by a concave lens profile. This very special design has the technological advantage that materials like sapphire or diamond can be used to make lenses by coating techniques. A first lens prototype focused x rays with a photon energy  = 15.25 keV to a lateral beam size of 164 nm × 296 nm full width at half maximum.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/105/13/1.4896914.html;jsessionid=gRFAwk2xO_ytp00uZGRGVa-Z.x-aip-live-02?itemId=/content/aip/journal/apl/105/13/10.1063/1.4896914&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/105/13/10.1063/1.4896914&pageURL=http://scitation.aip.org/content/aip/journal/apl/105/13/10.1063/1.4896914'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,