Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/105/14/10.1063/1.4897497
1.
1. O. Sqalli, M.-P. Bernal, P. Hoffmann, and F. Marquis-Weible, Appl. Phys. Lett. 76, 2134 (2000);
http://dx.doi.org/10.1063/1.126277
1. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, Nano Lett. 4, 957 (2004);
http://dx.doi.org/10.1021/nl049951r
1. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, Science 308, 1607 (2005);
http://dx.doi.org/10.1126/science.1111886
1. J. N. Farahani, D. W. Pohl, H.-J. Eisler, and B. Hecht, Phys. Rev. Lett. 95, 017402 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.017402
2.
2. R. Filter, S. Mühlig, T. Eichelkraut, C. Rockstuhl, and F. Lederer, Phys. Rev. B 86, 035404 (2012);
http://dx.doi.org/10.1103/PhysRevB.86.035404
2. K. Slowik, R. Filter, J. Straubel, F. Lederer, and C. Rockstuhl, Phys. Rev. B 88, 195414 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.195414
3.
3. F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. v. Plessen, and F. Lederer, Phys. Status Solidi A 205, 2844 (2008);
http://dx.doi.org/10.1002/pssa.200880451
3. H. A. Atwater and A. Polman, Nat. Mater. 9, 205 (2010).
http://dx.doi.org/10.1038/nmat2629
4.
4. J. Kim, O. Benson, H. Kan, and Y. Yamamoto, Nature 397, 500 (1999);
http://dx.doi.org/10.1038/17295
4. S. Schietinger, M. Barth, T. Aichele, and O. Benson, Nano Lett. 9, 1694 (2009);
http://dx.doi.org/10.1021/nl900384c
4. R. Filter, K. Słowik, J. Straubel, F. Lederer, and C. Rockstuhl, Optics Lett. 39, 1246 (2014).
http://dx.doi.org/10.1364/OL.39.001246
5.
5. J. L. West and N. J. Halas, Annu. Rev. Biomed. Eng. 5, 285 (2003);
http://dx.doi.org/10.1146/annurev.bioeng.5.011303.120723
5. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, Nano Lett. 10, 2342 (2010).
http://dx.doi.org/10.1021/nl9041033
6.
6. R. Alaee, C. Menzel, U. Huebner, E. Pshenay-Severin, S. B. Hasan, T. Pertsch, C. Rockstuhl, and F. Lederer, Nano Lett. 13, 3482 (2013).
http://dx.doi.org/10.1021/nl4007694
7.
7. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, Garnett W. Bryant, and F. J. García de Abajo, Phys. Rev. Lett. 90, 057401 (2003);
http://dx.doi.org/10.1103/PhysRevLett.90.057401
7. P. Nordlander, ACS Nano 3, 488 (2009);
http://dx.doi.org/10.1021/nn900212a
7. S. Kurth, K. Hiller, N. Neumann, M. Seifert, M. Ebermann, J. Zajadacz, and T. Gessner, Proc. SPIE 7713, 77131S (2010);
http://dx.doi.org/10.1117/12.854609
7. J. Ye, M. Shioi, K. Lodewijks, L. Lagae, T. Kawamura, and P. van Dorpe, Appl. Phys. Lett. 97, 163106 (2010);
http://dx.doi.org/10.1063/1.3504187
7. M. Toma, K. Cho, J. B. Wood, and R. M. Corn, Plasmonics 9, 765 (2014);
http://dx.doi.org/10.1007/s11468-013-9657-0
7. R. Near, C. Tabor, J. Duan, R. Pachter, and M. El-Sayed, Nano Lett. 12, 2158 (2012);
http://dx.doi.org/10.1021/nl300622p
7. C.-Y. Tsai, J.-W. Lin, C.-Y. Wu, P.-T. Lin, T.-W. Lu, and P.-T. Lee, Nano Lett. 12, 1648 (2012).
http://dx.doi.org/10.1021/nl300012m
8.
8. D. Lehr, K. Dietrich, C. Helgert, T. Käsebier, H.-J. Fuchs, A. Tünnermann, and E.-B. Kley, Opt. Lett. 37, 157 (2012).
http://dx.doi.org/10.1364/OL.37.000157
9.
9. E.-B. Kley, H. Schmidt, U. Zeitner, M. Banasch, and B. Schnabel, Proc. SPIE 8352, 83520M (2012);
http://dx.doi.org/10.1117/12.920562
9. K. Dietrich, D. Lehr, C. Helgert, A. Tünnermann, and E.-B. Kley, Adv. Mater. 24, OP321 (2012);
http://dx.doi.org/10.1002/adma.201203424
9. K. Dietrich, C. Menzel, D. Lehr, O. Puffky, U. Hübner, T. Pertsch, A. Tünnermann, and E.-B. Kley, Appl. Phys. Lett. 104, 193107 (2014);
http://dx.doi.org/10.1063/1.4876964
9. U. Zeitner and E.-B. Kley, Proc. SPIE 6290, 629009 (2006).
http://dx.doi.org/10.1117/12.682739
10.
10. A. Cattoni, E. Cambril, D. Decanini, G. Faini, and A. Haghiri-Gosnet, Microelectron. Eng. 87, 1015 (2010).
http://dx.doi.org/10.1016/j.mee.2009.11.106
11.
11. L. Scipioni, C. A. Sanford, J. Notte, B. Thompson, and S. McVey, J. Vac. Sci. Technol. 27, 3250 (2009).
http://dx.doi.org/10.1116/1.3258634
12.
12. P. Zimmerman, “ Double patterning lithography: double the trouble or double the fun?,” SPIE Newsroom (2009), doi: , see http://spie.org/x35993.xml.
http://dx.doi.org/10.1117/2.1200906.1691
http://aip.metastore.ingenta.com/content/aip/journal/apl/105/14/10.1063/1.4897497
Loading
/content/aip/journal/apl/105/14/10.1063/1.4897497
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/105/14/10.1063/1.4897497
2014-10-09
2016-09-25

Abstract

A double-patterning process for scalable, efficient, and deterministic nanoring array fabrication is presented. It enables gaps and features below a size of 20 nm. A writing time of 3 min/cm2 makes this process extremely appealing for scientific and industrial applications. Numerical simulations are in agreement with experimentally measured optical spectra. Therefore, a platform and a design tool for upcoming next generation plasmonic devices like hybrid plasmonic quantum systems are delivered.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/105/14/1.4897497.html;jsessionid=GgTSYn888FOxqWr3FM_1SAJ8.x-aip-live-02?itemId=/content/aip/journal/apl/105/14/10.1063/1.4897497&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/105/14/10.1063/1.4897497&pageURL=http://scitation.aip.org/content/aip/journal/apl/105/14/10.1063/1.4897497'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,