Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/105/15/10.1063/1.4898580
1.
1. Y. Cui and C. M. Lieber, Science 291, 851 (2001).
http://dx.doi.org/10.1126/science.291.5505.851
2.
2. G. Zheng, F. Patolsky, Y. Cui, W. U. Wang, and C. M. Lieber, Nat. Biotechnol. 23, 12941301 (2005).
http://dx.doi.org/10.1038/nbt1138
3.
3. P. Yang, R. Yan, and M. Fardy, Nano Lett. 10, 1529 (2010).
http://dx.doi.org/10.1021/nl100665r
4.
4. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964).
http://dx.doi.org/10.1063/1.1753975
5.
5. T. I. Kamins, R. S. Williams, Y. Chen, Y.-L. Chang, and Y. A. Chang, Appl. Phys. Lett. 76, 562 (2000).
http://dx.doi.org/10.1063/1.125852
6.
6. V. Schmidt, J. V. Wittemann, and U. Gosele, Chem. Rev. 110, 361 (2010).
http://dx.doi.org/10.1021/cr900141g
7.
7. J. L. Lensch-Falk, E. R. Hemesath, D. E. Perea, and L. J. Lauhon, J. Mater. Chem. 19, 849 (2009).
http://dx.doi.org/10.1039/b817391e
8.
8. H. J. Fan, P. Werner, and M. Zacharias, Small 2, 700 (2006).
http://dx.doi.org/10.1002/smll.200500495
9.
9. L. Cao, D. N. Barsic, A. R. Guichard, and M. L. Brongersma, Nano Lett. 7, 3523 (2007).
http://dx.doi.org/10.1021/nl0722370
10.
10. O. Englander, D. Christensen, and L. Lin, Appl. Phys. Lett. 82, 4797 (2003).
http://dx.doi.org/10.1063/1.1587262
11.
11. C. Y. Nam, J. Y. Kim, and J. E. Fischer, Appl. Phys. Lett. 86, 193112 (2005).
http://dx.doi.org/10.1063/1.1925775
12.
12. J. Wiedemair, N. Menegazzo, J. Pikarsky, K. S. Booksh, B. Mizaikoff, and C. Kranz, Electrochim. Acta 55, 5725 (2010).
http://dx.doi.org/10.1016/j.electacta.2010.05.008
13.
13. A. Botman, J. J. L. Mulders, R. Weemaes, and S. Mentink, Nanotechnology 17, 3779 (2006).
http://dx.doi.org/10.1088/0957-4484/17/15/028
14.
14. P. K. Sekhar, S. N. Sambandam, D. K. Sood, and S. Bhansali, Nanotechnology 17, 4606 (2006).
http://dx.doi.org/10.1088/0957-4484/17/18/013
15.
15. T. Baron, M. Gordon, F. Dhalluin, C. Ternon, P. Ferret, and P. Gentile, Appl. Phys. Lett. 89, 233111 (2006).
http://dx.doi.org/10.1063/1.2402118
16.
16. E. C. Garnett, W. Liang, and P. Yang, Adv. Mater. 19, 2946 (2007).
http://dx.doi.org/10.1002/adma.200700288
17.
17. W.-C. Yang, H. Ade, and R. J. Nemanich, Phys. Rev. B 69, 045421 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.045421
18.
18.C-Pt (Carbon-Platinum) Binary Systems. Part 5: Binary Systems Supplement 1, edited by P. Franke and D. Neuschütz ( Springer, Berlin, Heidelberg, 2007), Vol. 19B5, pp. 13.
19.
19. Z. L. Wang, J. M. Petroski, T. C. Green, and M. A. El-Sayed, J. Phys. Chem. B 102, 6145 (1998).
http://dx.doi.org/10.1021/jp981594j
20.
20. M. Hetzel, A. Lugstein, C. Zeiner, T. Wójcik, P. Pongratz, and E. Bertagnolli, Nanotechnology 22, 395601 (2011).
http://dx.doi.org/10.1088/0957-4484/22/39/395601
21.
21. A. Wawro, S. Suto, and A. Kasuya, Phys. Rev. B 72, 205302 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.205302
22.
22. L. E. Tanner and H. Okamoto, J. Phase Equilib. 12, 571 (1991).
http://dx.doi.org/10.1007/BF02645072
23.
23. P. A. Bennett, J. Chobanian, I. Flege, E. Sutter, and P. Sutter, Phys. Rev. B 76, 125410 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.125410
http://aip.metastore.ingenta.com/content/aip/journal/apl/105/15/10.1063/1.4898580
Loading
/content/aip/journal/apl/105/15/10.1063/1.4898580
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/105/15/10.1063/1.4898580
2014-10-16
2016-09-28

Abstract

The controlled localized bottom-up synthesis of silicon nanowires on arbitrarily shaped surfaces is still a persisting challenge for functional device assembly. In order to address this issue, electron beam and focused ion beam-assisted catalyst deposition have been investigated with respect to platinum expected to form a PtSi alloy catalyst for a subsequent bottom-up nanowire synthesis. The effective implementation of pure platinum nanoparticles or thin films for silicon nanowire growth has been demonstrated recently. Beam-deposited platinum contains significant quantities of amorphous carbon due to the organic precursor and gallium ions for a focused ion beam-based deposition process. Nevertheless, silicon nanowires could be grown on various substrates regardless of the platinum purity. Additionally, p-type doping could be realized with diborane whereas n-type doping suppressed a nanowire growth. The rational utilization of this beam-assisted approach enables us to control the localized synthesis of single silicon nanowires at planar surfaces but succeeded also in single nanowire growth at the three-dimensional apex of an atomic force microscopy tip. Therefore, this catalyst deposition method appears to be a unique extension of current technologies to assemble complex nanowire-based devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/105/15/1.4898580.html;jsessionid=BdCoOqioSbo_4iczGfhcMnRV.x-aip-live-03?itemId=/content/aip/journal/apl/105/15/10.1063/1.4898580&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/105/15/10.1063/1.4898580&pageURL=http://scitation.aip.org/content/aip/journal/apl/105/15/10.1063/1.4898580'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,