Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/105/16/10.1063/1.4900477
1.
1. L. A. Nafie, J. Raman Spectrosc. 43, 18451863 (2012).
http://dx.doi.org/10.1002/jrs.4221
2.
2. A. Zumbusch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 41424145 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.4142
3.
3. C. L. Evans, E. O. Potma, M. Puoris'haag, D. Cote, C. P. Lin, and X. S. Xie, Proc. Natl. Acad. Sci. U. S. A. 102, 1680716812 (2005).
http://dx.doi.org/10.1073/pnas.0508282102
4.
4. T. Hellerer, C. Axaeng, C. Brackmann, P. Hillertz, M. Pilon, and A. Enejder, Proc. Natl. Acad. Sci. U. S. A. 104, 1465814663 (2007).
http://dx.doi.org/10.1073/pnas.0703594104
5.
5. K. P. Knutsen, B. M. Messer, R. M. Onorato, and R. J. Saykally, J. Phys. Chem. B 110, 58545864 (2006).
http://dx.doi.org/10.1021/jp052416a
6.
6. K. B. Shi, H. F. Li, Q. Xu, D. Psaltis, and Z. W. Liu, Phys. Rev. Lett. 104, 093902 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.093902
7.
7. C. Heinrich, S. Bernet, and M. Ritsch-Marte, Appl. Phys. Lett. 84, 816818 (2004).
http://dx.doi.org/10.1063/1.1641164
8.
8. I. Toytman, K. Cohn, T. Smith, D. Simanovskii, and D. Palanker, Opt. Lett. 32, 19411943 (2007).
http://dx.doi.org/10.1364/OL.32.001941
9.
9. M. Lei, M. Winterhalder, R. Selm, and A. Zumbusch, J. Biomed. Opt. 16, 021102 (2011).
http://dx.doi.org/10.1117/1.3533707
10.
10. P. Berto, D. Gachet, P. Bon, S. Monneret, and H. Rigneault, Phys. Rev. Lett. 109, 093902 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.093902
11.
11. Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, Nat. Photonics 6, 845851 (2012).
http://dx.doi.org/10.1038/nphoton.2012.263
12.
12. A. Bohlin and C. J. Kliewer, J. Chem. Phys. 138, 221101221104 (2013).
http://dx.doi.org/10.1063/1.4810876
13.
13. A. Bohlin and C. J. Kliewer, J. Phys. Chem. Lett. 5, 12431248 (2014).
http://dx.doi.org/10.1021/jz500384y
14.
14. B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, J. Chem. Phys. 125, 044502 (2006).
http://dx.doi.org/10.1063/1.2219439
15.
15. D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, Science 316, 265268 (2007).
http://dx.doi.org/10.1126/science.1139055
16.
16. H. U. Stauffer, J. D. Miller, M. N. Slipchenko, T. R. Meyer, B. D. Prince, S. Roy, and J. R. Gord, J. Chem. Phys. 140, 024316 (2014).
http://dx.doi.org/10.1063/1.4860475
17.
17. S. R. Engel, J. D. Miller, C. E. Dedic, T. Seeger, A. Leipertz, and T. R. Meyer, J. Raman Spectrosc. 44, 13361343 (2013).
http://dx.doi.org/10.1002/jrs.4261
18.
18. S. P. Kearney and D. J. Scoglietti, Opt. Lett. 38, 833835 (2013).
http://dx.doi.org/10.1364/OL.38.000833
19.
19. R. P. Lucht, P. J. Kinnius, S. Roy, and J. R. Gord, J. Chem. Phys. 127, 044316 (2007).
http://dx.doi.org/10.1063/1.2751184
20.
20. A. Volkmer, L. D. Book, and X. S. Xie, Appl. Phys. Lett. 80, 15051507 (2002).
http://dx.doi.org/10.1063/1.1456262
21.
21. D. Oron, N. Dudovich, and Y. Silberberg, Phys. Rev. Lett. 90, 213902 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.213902
22.
22. F. Vestin, M. Afzelius, and P. E. Bengtsson, Proc. Combust. Inst. 31, 833840 (2007).
http://dx.doi.org/10.1016/j.proci.2006.07.066
23.
23. M. Jurna, J. P. Korterik, C. Otto, J. L. Herek, and H. L. Offerhaus, Phys. Rev. Lett. 103, 043905 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.043905
24.
24. D. Gachet, S. Brustlein, and H. Rigneault, Phys. Rev. Lett. 104, 213905 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.213905
25.
25. N. Dudovich, D. Oron, and Y. Silberberg, Nature 418, 512514 (2002).
http://dx.doi.org/10.1038/nature00933
26.
26. S. Roy, P. Wrzesinski, D. Pestov, T. Gunaratne, M. Dantus, and J. R. Gord, Appl. Phys. Lett. 95, 074102 (2009).
http://dx.doi.org/10.1063/1.3207829
27.
27. H. Kano and H. Hamaguchi, Appl. Phys. Lett. 85, 4298 (2004).
http://dx.doi.org/10.1063/1.1818741
28.
28. T. W. Kee and M. T. Cicerone, Opt. Lett. 29, 27012703 (2004).
http://dx.doi.org/10.1364/OL.29.002701
29.
29. A. Bohlin and C. J. Kliewer, Appl. Phys. Lett. 104, 031107 (2014).
http://dx.doi.org/10.1063/1.4862980
30.
30. A. Bohlin, B. D. Patterson, and C. J. Kliewer, J. Chem. Phys. 138, 081102 (2013).
http://dx.doi.org/10.1063/1.4793556
31.
31. A. C. Eckbreth, Appl. Phys. Lett. 32, 421423 (1978).
http://dx.doi.org/10.1063/1.90070
32.
32. T. Lang, K. L. Kompa, and M. Motzkus, Chem. Phys. Lett. 310, 6572 (1999).
http://dx.doi.org/10.1016/S0009-2614(99)00787-3
33.
33. L. Wolniewicz, J. Chem. Phys. 99, 18511868 (1993).
http://dx.doi.org/10.1063/1.465303
34.
34. L. A. Rahn, R. L. Farrow, and G. J. Rosasco, Phys. Rev. A 43, 60756088 (1991).
http://dx.doi.org/10.1103/PhysRevA.43.6075
35.
35. H. Tran, P. Joubert, L. Bonamy, B. Lavorel, V. Renard, F. Chaussard, O. Faucher, and B. Sinardet, J. Chem. Phys. 122, 194317 (2005).
http://dx.doi.org/10.1063/1.1894020
36.
36. M. Marrocco, J. Raman Spectrosc. 43, 621626 (2012).
http://dx.doi.org/10.1002/jrs.3135
http://aip.metastore.ingenta.com/content/aip/journal/apl/105/16/10.1063/1.4900477
Loading
/content/aip/journal/apl/105/16/10.1063/1.4900477
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/105/16/10.1063/1.4900477
2014-10-23
2016-12-07

Abstract

We propose a technique for ultrabroadband planar coherent Raman spectroscopy that enables wideband chemically selective mapping of molecular partition functions in the gas-phase within a single-laser-shot. A spectral region spanning 0–4200 cm−1 is excited simultaneously, in principle allowing for coherent planar imaging of most all fundamental Raman-active modes. This unique instantaneous and spatially correlated assessment enables multiplexed studies of transient dynamical systems in a two-dimensional (2D) field. Here, we demonstrate single-laser-shot high temperature diagnostics of H, with spatially resolved 2D measurement of transitions of both the pure-rotational H S-branch and the vibrational H Q-branch, analyzing the temperature contour of a reacting fuel-species as it evolves at a flame-front.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/105/16/1.4900477.html;jsessionid=Ga7vyDD3Dwt6fUPR2kn4tPcU.x-aip-live-03?itemId=/content/aip/journal/apl/105/16/10.1063/1.4900477&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/105/16/10.1063/1.4900477&pageURL=http://scitation.aip.org/content/aip/journal/apl/105/16/10.1063/1.4900477'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,