Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. T. Maruyama, Y. Shiota, T. Nozaki, K. Ohta, N. Toda, M. Mizuguchi, A. A. Tulapurkar, T. Shinjo, M. Shiraishi, S. Mizukami, Y. Ando, and Y. Suzuki, Nat. Nanotechnol. 4, 158 (2009).
2. W.-G. Wang, M. Li, S. Hageman, and C. L. Chien, Nat. Mater. 11, 64 (2012).
3. L. Gerhard, T. K. Yamada, T. Balashov, A. F. Takacs, R. J. H. Wesselink, M. Däne, M. Fechner, S. Ostanin, A. Ernst, I. Mertig, and W. Wulfhekel, Nat. Nanotechnol. 5, 792 (2010).
4. S. Schmaus, A. Bagrets, Y. Nahas, T. K. Yamada, A. Bork, M. Bowen, E. Beaurepaire, F. Evers, and W. Wulfhekel, Nat. Nanotechnol. 6, 185 (2011).
5. A. Bagrets, S. Schmaus, A. Jaafar, D. Kramczynski, T. K. Yamada, M. Alouani, W. Wulfhekel, and F. Evers, Nano Lett. 12, 5131 (2012).
6. S. L. Kawahara, J. Lagoute, V. Repain, C. Chacon, Y. Girard, S. Rousset, A. Smogunov, and C. Barreteau, Nano Lett. 12, 4558 (2012).
7. V. M. Karpan, G. Giovannetti, P. A. Khomyakov, M. Talanana, A. A. Starikov, M. Zwierzycki, J. van den Brink, G. Brocks, and P. J. Kelly, Phys. Rev. Lett. 99, 176602 (2007).
8. R. Wiesendanger, M. Bode, and M. Getzlaff, Appl. Phys. Lett. 75, 124 (1999).
9. M. Bode, O. Pietzsch, A. Kubetzka, S. Heinze, and R. Wiesendanger, Phys. Rev. Lett. 86, 2142 (2001).
10. O. Pietzsch, A. Kubetzka, M. Bode, and R. Wiesendanger, Phys. Rev. Lett. 84, 5212 (2000).
11. T. K. Yamada, M. M. J. Bischoff, G. M. M. Heijnen, T. Mizoguchi, and H. van Kempen, Phys. Rev. Lett. 90, 056803 (2003).
12. T. K. Yamada, M. M. J. Bischoff, G. M. M. Heijnen, T. Mizoguchi, and H. van Kempen, Jpn. J. Appl. Phys., Part 1 42, 4688 (2003).
13. U. Schlickum, N. Janke-Gilman, W. Wulfhekel, and J. Kirschner, Phys. Rev. Lett. 92, 107203 (2004).
14. T. K. Yamada, E. Martinez, A. Vega, R. Robles, D. Stoeffler, A. L. Vazquez de Parga, T. Mizoguchi, and H. van Kempen, Nanotechnology 18, 235702 (2007).
15. M. Kleiber, M. Bode, R. Ravlic, and R. Wiesendanger, Phys. Rev. Lett. 85, 4606 (2000).
16. A. Kubetzka, M. Bode, O. Pietzsch, and R. Wiesendanger, Phys. Rev. Lett. 88, 057201 (2002).
17. T. Matsuda, A. Tonomura, T. K. Yamada, D. Okuyama, N. Mizuno, A. L. Vazquez, V. de Parga, H. van Kempen, and T. Mizoguchi, IEEE Trans. Magn. 41, 3727 (2005).
18. H. F. Ding, W. Wulfhekel, U. Schlickum, and J. Kirschner, Europhys. Lett. 63, 419 (2003).
19. A. Li Bassi, C. S. Casari, D. Cattaneo, F. Donati, S. Foglio, M. Passoni, C. E. Bottani, P. Biagioni, A. Brambilla, M. Finazzi, F. Ciccacci, and L. Duo, Appl. Phys. Lett. 91, 173120 (2007).
20. M. Corbetta, S. Ouazi, J. Borme, Y. Nahas, F. Donati, H. Oka, S. Wedekind, D. Sander, and J. Kirschner, Jpn. J. Appl. Phys., Part 1 51, 030208 (2012).
21. G. Rodary, J.-C. Girard, L. Largeau, C. David, O. Mauguin, and Z.-Z. Wang, Appl. Phys. Lett. 98, 082505 (2011).
22. S. Nagai, K. Hata, H. Oka, D. Sander, and J. Kirschner, Appl. Phys. Express 7, 025204 (2014).
23. H. Yang, A. R. Smith, M. Prikhodko, and W. R. L. Lambrecht, Phys. Rev. Lett. 89, 226101 (2002).
24. T. K. Yamada, M. M. J. Bischoff, T. Mizoguchi, and H. van Kempen, Surf. Sci. 516, 179 (2002).
25. T. Irisawa, T. K. Yamada, and T. Mizoguchi, New J. Phys. 11, 113031 (2009).
26. Y. Yamagishi, S. Nakashima, K. Oiso, and T. K. Yamada, Nanotechnology 24, 395704 (2013).
27. Y. Qi, D. Y. Xing, and J. Dong, Phys. Rev. B 58, 2783 (1998).
28. T. K. Yamada, M. M. J. Bischoff, T. Mizoguchi, and H. van Kempen, Appl. Phys. Lett. 82, 1437 (2003).
29. C. L. Gao, W. Wulfhekel, and J. Kirschner, Phys. Rev. Lett. 101, 267205 (2008).
30. M. Bode, M. Hennefarth, D. Haude, M. Getzlaff, and R. Wiesendanger, Surf. Sci. 432, 8 (1999).
31. All data were obtained using the same bias voltage (Vs = −0.5 V) and tunneling current (I = 0.5 nA) to stabilize the distance between the tip and sample before disconnecting the feedback loop to acquire the dI/dV curves in order to avoid the dependence of the magnetic contrast on the tip-sample separation.11 Since the spin polarization values for Mn(001) are well characterized and almost constant above the Fermi level,11 we measured magnetoresistance values between +0.2 to +0.4 eV.

Data & Media loading...


Article metrics loading...



Antiferromagnets produce no stray field, and therefore, a tip electrode made of antiferromagnetic material has been considered to be the most suitable choice to measure such as magnetoresistance (MR) through single isolated magnetic nanoparticles, molecules, and ultrathin films. Spin polarizations (P) of antiferromagnetic 3-nm, 6-nm, and annealed 3-nm Mn films grown on W tips with a bcc(110) apex as well as bulk-NiMn tips were obtained at 300 K by measuring MR in ultrahigh vacuum by means of spin-polarized scanning tunneling microscopy using a layerwise antiferromagnetically stacking bct-Mn(001) film electrode. The Mn-coated tips with coverages of 3 and 6 nm exhibited P values of 1 ± 1% and 3 ± 2%, respectively, which tips likely contain α- or strained Mn. With a thermal assist, the crystalline quality and the magnetic stability of the film could increase. The annealed tip exhibited P = 9 ± 2%. The bulk-NiMn tips exhibit spin polarizations of 0 or 6 ± 2% probably depending on the chemical species (Mn or Ni) present at the apex of the tip. Fe-coated W tips were used to estimate the bct-Mn(001) film spin polarization.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd