Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. M. Born and E. Wolf, Principles of Optics, 7th ed. ( Cambridge University Press, Cambridge, 1999).
2. W. M. Haynes, D. R. Lide, and T. J. Bruno, CRC Handbook of Chemistry and Physics, 95th ed. ( CRC Press, Boca Raton, FL, USA, 2014).
3. R. G. Hunsperger, Integrated Optics: Theory and Technology, 6th ed. ( Springer, New York, 2009).
4. M. J. Weber, Handbook of Optical Materials ( CRC Press, Boca Raton, FL, USA, 2002).
5. N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, Science 340, 1304 (2013).
6. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, Science 325, 1513 (2009).
7. S. C. Jiang, X. Xiong, P. Sarriugarte, S. W. Jiang, X. B. Yin, Y. Wang, R. W. Peng, D. Wu, R. Hillenbrand, X. Zhang, and M. Wang, Phys. Rev. B 88, 161104(R) (2013).
8. C. Wu, H. Q. Li, Y. Xing, L. Fang, H. Chen, and C. T. Chan, Phys. Rev. Lett. 107, 177401 (2011).
9. Y. Zhao, M. A. Belkin, and A. Alu, Nat. Commun. 3, 870 (2012).
10. W. Wang, Y. L. Lu, R. J. Knize, K. Reinhardt, and S. C. Chen, Opt. Express 17, 7361 (2009).
11. Z. Y. Yang, M. Zhao, P. X. Lu, and Y. F. Lu, Opt. Lett. 35, 2588 (2010).
12. X. Xiong, S.-C. Jiang, Y.-H. Hu, J.-M. Zhao, Y.-J. Feng, R.-W. Peng, and M. Wang, AIP Adv. 2, 041413 (2012).
13. X. Xiong, W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, Phys. Rev. B 81, 075119 (2010).
14. J. M. Hao, Y. Yuan, L. X. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, Phys. Rev. Lett. 99, 063908 (2007).
15. N. Liu, H. Liu, S. N. Zhu, and H. Giessen, Nat. Photonics 3, 157 (2009).
16. H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, Phys. Rev. B 76, 073101 (2007).
17. Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, Appl. Phys. Lett. 99, 221907 (2011).
18. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, Nat. Commun. 2, 517 (2011).
19. R. H. Fan, L. H. Zhu, R. W. Peng, X. R. Huang, D. X. Qi, X. P. Ren, Q. Hu, and M. Wang, Phys. Rev. B 87, 195444 (2013).
20. D. R. Chowdhury, R. Singh, M. Reiten, H. T. Chen, A. J. Taylor, J. F. O'Hara, and A. K. Azad, Opt. Express 19, 15817 (2011).
21. A. Pors and S. I. Bozhevolnyi, Opt. Express 21, 2942 (2013).
22. N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, Phys. Rev. Lett. 106, 037403 (2011).
23. Y. X. Cui, K. H. Fung, J. Xu, H. J. Ma, Y. Jin, S. L. He, and N. X. Fang, Nano Lett. 12, 1443 (2012).
24. F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. L. He, Appl. Phys. Lett. 100, 103506 (2012).
25. J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. S. Cumming, Opt. Lett. 36, 3476 (2011).
26. S. C. Jiang, X. Xiong, Y.-S. Hu, Y.-H. Hu, G.-B. Ma, R.-W. Peng, C. Sun, and M. Wang, Phys. Rev. X 4, 021026 (2014).
27. H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, Nature 444, 597 (2006).
28. W. A. MacDonald, J. Mater. Chem. 14, 4 (2004).
29. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, Nature 412, 697 (2001).
30. X. Xiong, Z.-H. Xue, C. Meng, S.-C. Jiang, Y.-H. Hu, R.-W. Peng, and M. Wang, Phys. Rev. B 88, 115105 (2013).
31. X. Xiong, S.-C. Jiang, Y.-H. Hu, R.-W. Peng, and M. Wang, Adv. Mater. 25, 3994 (2013).
32. N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, Nat. Mater. 8, 758 (2009).
33. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, Science 312, 892 (2006).
34. M. Schroeder, M. Buelters, C. von Kopylow, and R. B. Bergmann, J. Eur. Opt. Soc. Rapid Publ. 7, 12027 (2012).
35.See supplementary material at for the retrieval method of phase differences and the discussion of conjugation relation.[Supplementary Material]
36. J. M. Hao, Q. J. Ren, Z. H. An, X. Q. Huang, Z. H. Chen, M. Qiu, and L. Zhou, Phys. Rev. A 80, 023807 (2009).
37. C. M. Soukoulis and M. Wegener, Nat. Photonics 5, 523 (2011).

Data & Media loading...


Article metrics loading...



In this letter, we report a full-metallic broadband wave plate assembled by standing metallic L-shaped stereostructures (LSSs). We show that with an array of LSSs, high polarization conversion ratio is achieved within a broad frequency band. Moreover, by rotating the orientation of the array of LSSs, the electric components of the reflection beam in two orthogonal directions and their phase difference can be independently tuned. In this way, all the polarization states on the Poincaré sphere can be realized. As examples, the functionalities of a quarter wave plate and a half wave plate are experimentally demonstrated with both reflection spectra and focal-plane-array imaging. Our designing provides a unique approach in realizing the broadband wave plate to manipulate the polarization state of light.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd