Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/105/20/10.1063/1.4902405
1.
1. M. Born and E. Wolf, Principles of Optics, 7th ed. ( Cambridge University Press, Cambridge, 1999).
2.
2. W. M. Haynes, D. R. Lide, and T. J. Bruno, CRC Handbook of Chemistry and Physics, 95th ed. ( CRC Press, Boca Raton, FL, USA, 2014).
3.
3. R. G. Hunsperger, Integrated Optics: Theory and Technology, 6th ed. ( Springer, New York, 2009).
4.
4. M. J. Weber, Handbook of Optical Materials ( CRC Press, Boca Raton, FL, USA, 2002).
5.
5. N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, Science 340, 1304 (2013).
http://dx.doi.org/10.1126/science.1235399
6.
6. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, Science 325, 1513 (2009).
http://dx.doi.org/10.1126/science.1177031
7.
7. S. C. Jiang, X. Xiong, P. Sarriugarte, S. W. Jiang, X. B. Yin, Y. Wang, R. W. Peng, D. Wu, R. Hillenbrand, X. Zhang, and M. Wang, Phys. Rev. B 88, 161104(R) (2013).
http://dx.doi.org/10.1103/PhysRevB.88.161104
8.
8. C. Wu, H. Q. Li, Y. Xing, L. Fang, H. Chen, and C. T. Chan, Phys. Rev. Lett. 107, 177401 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.177401
9.
9. Y. Zhao, M. A. Belkin, and A. Alu, Nat. Commun. 3, 870 (2012).
http://dx.doi.org/10.1038/ncomms1877
10.
10. W. Wang, Y. L. Lu, R. J. Knize, K. Reinhardt, and S. C. Chen, Opt. Express 17, 7361 (2009).
http://dx.doi.org/10.1364/OE.17.007361
11.
11. Z. Y. Yang, M. Zhao, P. X. Lu, and Y. F. Lu, Opt. Lett. 35, 2588 (2010).
http://dx.doi.org/10.1364/OL.35.002588
12.
12. X. Xiong, S.-C. Jiang, Y.-H. Hu, J.-M. Zhao, Y.-J. Feng, R.-W. Peng, and M. Wang, AIP Adv. 2, 041413 (2012).
http://dx.doi.org/10.1063/1.4773466
13.
13. X. Xiong, W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, Phys. Rev. B 81, 075119 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.075119
14.
14. J. M. Hao, Y. Yuan, L. X. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, Phys. Rev. Lett. 99, 063908 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.063908
15.
15. N. Liu, H. Liu, S. N. Zhu, and H. Giessen, Nat. Photonics 3, 157 (2009).
http://dx.doi.org/10.1038/nphoton.2009.4
16.
16. H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, Phys. Rev. B 76, 073101 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.073101
17.
17. Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, Appl. Phys. Lett. 99, 221907 (2011).
http://dx.doi.org/10.1063/1.3664774
18.
18. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, Nat. Commun. 2, 517 (2011).
http://dx.doi.org/10.1038/ncomms1528
19.
19. R. H. Fan, L. H. Zhu, R. W. Peng, X. R. Huang, D. X. Qi, X. P. Ren, Q. Hu, and M. Wang, Phys. Rev. B 87, 195444 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.195444
20.
20. D. R. Chowdhury, R. Singh, M. Reiten, H. T. Chen, A. J. Taylor, J. F. O'Hara, and A. K. Azad, Opt. Express 19, 15817 (2011).
http://dx.doi.org/10.1364/OE.19.015817
21.
21. A. Pors and S. I. Bozhevolnyi, Opt. Express 21, 2942 (2013).
http://dx.doi.org/10.1364/OE.21.002942
22.
22. N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, Phys. Rev. Lett. 106, 037403 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.037403
23.
23. Y. X. Cui, K. H. Fung, J. Xu, H. J. Ma, Y. Jin, S. L. He, and N. X. Fang, Nano Lett. 12, 1443 (2012).
http://dx.doi.org/10.1021/nl204118h
24.
24. F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. L. He, Appl. Phys. Lett. 100, 103506 (2012).
http://dx.doi.org/10.1063/1.3692178
25.
25. J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. S. Cumming, Opt. Lett. 36, 3476 (2011).
http://dx.doi.org/10.1364/OL.36.003476
26.
26. S. C. Jiang, X. Xiong, Y.-S. Hu, Y.-H. Hu, G.-B. Ma, R.-W. Peng, C. Sun, and M. Wang, Phys. Rev. X 4, 021026 (2014).
http://dx.doi.org/10.1103/PhysRevX.4.021026
27.
27. H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, Nature 444, 597 (2006).
http://dx.doi.org/10.1038/nature05343
28.
28. W. A. MacDonald, J. Mater. Chem. 14, 4 (2004).
http://dx.doi.org/10.1039/b310846p
29.
29. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, Nature 412, 697 (2001).
http://dx.doi.org/10.1038/35089130
30.
30. X. Xiong, Z.-H. Xue, C. Meng, S.-C. Jiang, Y.-H. Hu, R.-W. Peng, and M. Wang, Phys. Rev. B 88, 115105 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.115105
31.
31. X. Xiong, S.-C. Jiang, Y.-H. Hu, R.-W. Peng, and M. Wang, Adv. Mater. 25, 3994 (2013).
http://dx.doi.org/10.1002/adma.201300223
32.
32. N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, Nat. Mater. 8, 758 (2009).
http://dx.doi.org/10.1038/nmat2495
33.
33. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, Science 312, 892 (2006).
http://dx.doi.org/10.1126/science.1126021
34.
34. M. Schroeder, M. Buelters, C. von Kopylow, and R. B. Bergmann, J. Eur. Opt. Soc. Rapid Publ. 7, 12027 (2012).
http://dx.doi.org/10.2971/jeos.2012.12027
35.
35.See supplementary material at http://dx.doi.org/10.1063/1.4902405 for the retrieval method of phase differences and the discussion of conjugation relation.[Supplementary Material]
36.
36. J. M. Hao, Q. J. Ren, Z. H. An, X. Q. Huang, Z. H. Chen, M. Qiu, and L. Zhou, Phys. Rev. A 80, 023807 (2009).
http://dx.doi.org/10.1103/PhysRevA.80.023807
37.
37. C. M. Soukoulis and M. Wegener, Nat. Photonics 5, 523 (2011).
http://dx.doi.org/10.1038/NPHOTON.2011.154
http://aip.metastore.ingenta.com/content/aip/journal/apl/105/20/10.1063/1.4902405
Loading
/content/aip/journal/apl/105/20/10.1063/1.4902405
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/105/20/10.1063/1.4902405
2014-11-20
2016-09-28

Abstract

In this letter, we report a full-metallic broadband wave plate assembled by standing metallic L-shaped stereostructures (LSSs). We show that with an array of LSSs, high polarization conversion ratio is achieved within a broad frequency band. Moreover, by rotating the orientation of the array of LSSs, the electric components of the reflection beam in two orthogonal directions and their phase difference can be independently tuned. In this way, all the polarization states on the Poincaré sphere can be realized. As examples, the functionalities of a quarter wave plate and a half wave plate are experimentally demonstrated with both reflection spectra and focal-plane-array imaging. Our designing provides a unique approach in realizing the broadband wave plate to manipulate the polarization state of light.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/105/20/1.4902405.html;jsessionid=PhqMWLAEmaJpLwKAL5hdLzn0.x-aip-live-03?itemId=/content/aip/journal/apl/105/20/10.1063/1.4902405&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/105/20/10.1063/1.4902405&pageURL=http://scitation.aip.org/content/aip/journal/apl/105/20/10.1063/1.4902405'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,