Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/105/20/10.1063/1.4902539
1.
1. Z. H. Xiong, D. Wu, Z. V. Vardeny, and J. Shi, Nature 427(6977), 821 (2004).
http://dx.doi.org/10.1038/nature02325
2.
2. V. A. Dediu, L. E. Hueso, I. Bergenti, and C. Taliani, Nat. Mater. 8(9), 707 (2009).
http://dx.doi.org/10.1038/nmat2510
3.
3. D. Sun, E. Ehrenfreund, and Z. V. Vardeny, Chem. Commun. 50(15), 1781 (2014).
http://dx.doi.org/10.1039/c3cc47126h
4.
4. C. Barraud, P. Seneor, R. Mattana, S. Fusil, K. Bouzehouane, C. Deranlot, P. Graziosi, L. Hueso, I. Bergenti, and V. Dediu, Nat. Phys. 6(8), 615 (2010).
http://dx.doi.org/10.1038/nphys1688
5.
5. L. Schulz, L. Nuccio, M. Willis, P. Desai, P. Shakya, T. Kreouzis, V. K. Malik, C. Bernhard, F. L. Pratt, N. A. Morley, A. Suter, G. J. Nieuwenhuys, T. Prokscha, E. Morenzoni, W. P. Gillin, and A. J. Drew, Nat. Mater. 10(1), 39 (2011).
http://dx.doi.org/10.1038/nmat2912
6.
6. B. B. Chen, Y. Zhou, S. Wang, Y. J. Shi, H. F. Ding, and D. Wu, Appl. Phys. Lett. 103(7), 072402 (2013).
http://dx.doi.org/10.1063/1.4818614
7.
7. D. Sun, L. Yin, C. Sun, H. Guo, Z. Gai, X. G. Zhang, T. Z. Ward, Z. Cheng, and J. Shen, Phys. Rev. Lett. 104(23), 236602 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.236602
8.
8. N. Rolfe, P. Desai, P. Shakya, T. Kreouzis, and W. P. Gillin, J. Appl. Phys. 104(8), 083703 (2008).
http://dx.doi.org/10.1063/1.3000454
9.
9. T. D. Nguyen, E. Ehrenfreund, and Z. V. Vardeny, Science 337(6091), 204 (2012).
http://dx.doi.org/10.1126/science.1223444
10.
10. F. J. Wang, Z. H. Xiong, D. Wu, J. Shi, and Z. V. Vardeny, Synth. Met. 155(1), 172 (2005).
http://dx.doi.org/10.1016/j.synthmet.2005.07.345
11.
11. O. L. A. Monti, J. Phys. Chem. Lett. 3(17), 2342 (2012).
http://dx.doi.org/10.1021/jz300850x
12.
12. Y. Q. Zhan, X. J. Liu, E. Carlegrim, F. H. Li, I. Bergenti, P. Graziosi, V. Dediu, and M. Fahlman, Appl. Phys. Lett. 94(5), 053301 (2009).
http://dx.doi.org/10.1063/1.3078274
13.
13. V. Dediu, L. Hueso, I. Bergenti, A. Riminucci, F. Borgatti, P. Graziosi, C. Newby, F. Casoli, M. De Jong, C. Taliani, and Y. Zhan, Phys. Rev. B 78(11), 115203 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.115203
14.
14. S. Steil, N. Großmann, M. Laux, A. Ruffing, D. Steil, M. Wiesenmayer, S. Mathias, O. L. A. Monti, M. Cinchetti, and M. Aeschlimann, Nat. Phys. 9(4), 242 (2013).
http://dx.doi.org/10.1038/nphys2548
15.
15. A. Droghetti, S. Steil, N. Großmann, N. Haag, H. Zhang, M. Willis, W. P. Gillin, A. J. Drew, M. Aeschlimann, S. Sanvito, and M. Cinchetti, Phys. Rev. B 89(9), 094412 (2014).
http://dx.doi.org/10.1103/PhysRevB.89.094412
16.
16. N. A. Morley, A. J. Drew, H. Zhang, K. Scott, S. Hudziak, and D. J. Morgan, Appl. Surf. Sci. 313(0), 850 (2014).
http://dx.doi.org/10.1016/j.apsusc.2014.06.088
17.
17. A. Many and G. Rakavy, Phys. Rev. 126(6), 1980 (1962).
http://dx.doi.org/10.1103/PhysRev.126.1980
18.
18. H. Zhang, P. Desai, Y. Q. Zhan, A. J. Drew, W. P. Gillin, and T. Kreouzis, Appl. Phys. Lett. 104(1), 013303 (2014).
http://dx.doi.org/10.1063/1.4861120
19.
19. D. Hertel and H. Bässler, Chemphyschem 9(5), 666 (2008).
http://dx.doi.org/10.1002/cphc.200700575
20.
20. Y. S. Park, E. Kim, B. Hong, and J. Lee, Mater. Res. Bull. 48(12), 5115 (2013).
http://dx.doi.org/10.1016/j.materresbull.2013.07.026
21.
21. H. Z. Gao, L. He, Z. J. He, Z. B. Li, Z. H. Wu, W. H. Cheng, Q. Ai, X. X. Fan, Q. R. Ou, and R. Q. Liang, Plasma Sci. Technol. 15(8), 791 (2013).
http://dx.doi.org/10.1088/1009-0630/15/8/14
22.
22. K. Sugiyama, H. Ishii, Y. Ouchi, and K. Seki, J. Appl. Phys. 87(1), 295 (2000).
http://dx.doi.org/10.1063/1.371859
23.
23. D. E. Eastman, Phys. Rev. B 2(1), 1 (1970).
http://dx.doi.org/10.1103/PhysRevB.2.1
http://aip.metastore.ingenta.com/content/aip/journal/apl/105/20/10.1063/1.4902539
Loading
/content/aip/journal/apl/105/20/10.1063/1.4902539
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/105/20/10.1063/1.4902539
2014-11-21
2016-12-05

Abstract

Organic Spin Valves (OSVs) operate at small bias (<100 mV) when carrier injection should not occur due to injection barriers and in built potentials. We explore the consequences of hybrid-interface states between a ferromagnetic electrode and an organic semiconductor in OSV carrier injection. By temperature-dependent Dark Injection measurements, we observe hole trapping due to these filled states and measure a low thermal activation energy (∼100 meV) of the carrier density within OSVs. The small injection barrier is consistent with a significant interfacial potential, due to hybrid-interface state filling, overcoming the injection barrier due to the electrode work function—transport level mismatch.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/105/20/1.4902539.html;jsessionid=aYNjQyH7guhim7LEM8DAOKjc.x-aip-live-03?itemId=/content/aip/journal/apl/105/20/10.1063/1.4902539&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/105/20/10.1063/1.4902539&pageURL=http://scitation.aip.org/content/aip/journal/apl/105/20/10.1063/1.4902539'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,