Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. C. D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mater. 14, 99 (2002).<99::AID-ADMA99>3.0.CO;2-9
2. S. R. Forrest, Nature 428, 911 (2004).
3. B. Hu, L. Yan, and M. Shao, Adv. Mater. 21, 1500 (2009).
4. H. Klauk, Chem. Soc. Rev. 39, 2643 (2010).
5. L. Burgi, T. J. Richards, R. H. Friend, and H. Sirringhaus, J. Appl. Phys. 94, 6129 (2003).
6. S. Braun, W. R. Salaneck, and M. Fahlman, Adv. Mater. 21, 1450 (2009).
7. I. G. Hill, A. Rajagopal, A. Kahn, and Y. Hu, Appl. Phys. Lett. 73, 662 (1998).
8. N. Koch, A. Kahn, J. Ghijsen, J. J. Pireaux, J. Schwartz, R. L. Johnson, and A. Elschner, Appl. Phys. Lett. 82, 70 (2003).
9. D. J. Gundlach, L. Zhou, J. A. Nichols, T. N. Jackson, P. V. Necliudov, and M. S. Shur, J. Appl. Phys. 100, 024509 (2006).
10. D. Adil and S. Guha, J. Phys. Chem. C 116, 12779 (2012).
11. S. Pang, H. N. Tsao, X. Feng, and K. Muellen, Adv. Mater. 21, 3488 (2009).
12. H. A. Becerril, R. M. Stoltenberg, M. L. Tang, M. E. Roberts, Z. Liu, Y. Chen, D. H. Kim, B. L. Lee, S. Lee, and Z. Bao, ACS Nano 4, 6343 (2010).
13. P. H. Wobkenberg, G. Eda, D. S. Leem, J. C. de Mello, D. D. C. Bradley, M. Chhowalla, and T. D. Anthopoulos, Adv. Mater. 23, 1558 (2011).
14. C. G. Lee, S. Park, R. S. Ruoff, and A. Dodabalapur, Appl. Phys. Lett. 95, 023304 (2009).
15. K. Suganuma, S. Watanabe, T. Gotou, and K. Ueno, Appl. Phys. Express 4, 021603 (2011).
16. J. S. Lee, N. H. Kim, M. S. Kang, H. Yu, D. R. Lee, J. H. Oh, S. T. Chang, and J. H. Cho, Small 9, 2817 (2013).
17. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, Nature 442, 282 (2006).
18. K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, Nat. Chem. 2, 1015 (2010).
19. C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, Adv. Funct. Mater. 19, 2577 (2009).
20. G. Eda, Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, C. W. Chen, and M. Chhowalla, Adv. Mater. 22, 505 (2010).
21. D. Joung and S. I. Khondaker, Phys. Rev. B 86, 235423 (2012).
22. D. Joung and S. I. Khondaker, J. Phys. Chem. C 117, 26776 (2013).
23. P. V. Kumar, M. Bernardi, and J. C. Grossman, ACS Nano 7, 1638 (2013).
24. B. Kang, S. Lim, W. H. Lee, S. B. Jo, and K. Cho, Adv. Mater. 25, 5856 (2013).
25.See supplementary material at for XPS of RGO, AFM image of RGO electrode, pentacene film morphology, transfer curve in linear regime, and summary of all devices.[Supplementary Material]
26. D. Joung, A. Chunder, L. Zhai, and S. I. Khondaker, Nanotechnology 21, 165202 (2010).
27. B. K. Sarker and S. I. Khondaker, ACS Nano 6, 4993 (2012).
28. X. Ou, L. Jiang, P. Chen, M. Zhu, W. Hu, M. Liu, J. Zhu, and H. Ju, Adv. Funct. Mater. 23, 2422 (2013).

Data & Media loading...


Article metrics loading...



One of the major bottlenecks in fabricating high performance organic field effect transistors (OFETs) is a large interfacial contact barrier between metal electrodes and organic semiconductors (OSCs) which makes the charge injection inefficient. Recently, reduced graphene oxide (RGO) has been suggested as an alternative electrode material for OFETs. RGO has tunable electronic properties and its conductivity can be varied by several orders of magnitude by varying the carbon fraction. However, whether the fraction of RGO in the electrode affects the performance of the fabricated OFETs is yet to be investigated. In this study, we demonstrate that the performance of OFETs with pentacene as OSC and RGO as electrode can be continuously improved by increasing the carbon fraction of RGO. When compared to control palladium electrodes, the mobility of the OFETs shows an improvement of ∼200% for 61% fraction RGO, which further improves to ∼500% for 80% RGO electrode. Similar improvements were also observed in current on-off ratio, on-current, and transconductance. Our study suggests that, in addition to π-π interaction at RGO/pentacene interface, the tunable electronic properties of RGO electrode have a significant role in OFETs performance.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd