Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/105/22/10.1063/1.4902881
1.
1. C. D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mater. 14, 99 (2002).
http://dx.doi.org/10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9
2.
2. S. R. Forrest, Nature 428, 911 (2004).
http://dx.doi.org/10.1038/nature02498
3.
3. B. Hu, L. Yan, and M. Shao, Adv. Mater. 21, 1500 (2009).
http://dx.doi.org/10.1002/adma.200802386
4.
4. H. Klauk, Chem. Soc. Rev. 39, 2643 (2010).
http://dx.doi.org/10.1039/b909902f
5.
5. L. Burgi, T. J. Richards, R. H. Friend, and H. Sirringhaus, J. Appl. Phys. 94, 6129 (2003).
http://dx.doi.org/10.1063/1.1613369
6.
6. S. Braun, W. R. Salaneck, and M. Fahlman, Adv. Mater. 21, 1450 (2009).
http://dx.doi.org/10.1002/adma.200802893
7.
7. I. G. Hill, A. Rajagopal, A. Kahn, and Y. Hu, Appl. Phys. Lett. 73, 662 (1998).
http://dx.doi.org/10.1063/1.121940
8.
8. N. Koch, A. Kahn, J. Ghijsen, J. J. Pireaux, J. Schwartz, R. L. Johnson, and A. Elschner, Appl. Phys. Lett. 82, 70 (2003).
http://dx.doi.org/10.1063/1.1532102
9.
9. D. J. Gundlach, L. Zhou, J. A. Nichols, T. N. Jackson, P. V. Necliudov, and M. S. Shur, J. Appl. Phys. 100, 024509 (2006).
http://dx.doi.org/10.1063/1.2215132
10.
10. D. Adil and S. Guha, J. Phys. Chem. C 116, 12779 (2012).
http://dx.doi.org/10.1021/jp3031804
11.
11. S. Pang, H. N. Tsao, X. Feng, and K. Muellen, Adv. Mater. 21, 3488 (2009).
http://dx.doi.org/10.1002/adma.200803812
12.
12. H. A. Becerril, R. M. Stoltenberg, M. L. Tang, M. E. Roberts, Z. Liu, Y. Chen, D. H. Kim, B. L. Lee, S. Lee, and Z. Bao, ACS Nano 4, 6343 (2010).
http://dx.doi.org/10.1021/nn101369j
13.
13. P. H. Wobkenberg, G. Eda, D. S. Leem, J. C. de Mello, D. D. C. Bradley, M. Chhowalla, and T. D. Anthopoulos, Adv. Mater. 23, 1558 (2011).
http://dx.doi.org/10.1002/adma.201004161
14.
14. C. G. Lee, S. Park, R. S. Ruoff, and A. Dodabalapur, Appl. Phys. Lett. 95, 023304 (2009).
http://dx.doi.org/10.1063/1.3176216
15.
15. K. Suganuma, S. Watanabe, T. Gotou, and K. Ueno, Appl. Phys. Express 4, 021603 (2011).
http://dx.doi.org/10.1143/APEX.4.021603
16.
16. J. S. Lee, N. H. Kim, M. S. Kang, H. Yu, D. R. Lee, J. H. Oh, S. T. Chang, and J. H. Cho, Small 9, 2817 (2013).
http://dx.doi.org/10.1002/smll.201300538
17.
17. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, Nature 442, 282 (2006).
http://dx.doi.org/10.1038/nature04969
18.
18. K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, Nat. Chem. 2, 1015 (2010).
http://dx.doi.org/10.1038/nchem.907
19.
19. C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, Adv. Funct. Mater. 19, 2577 (2009).
http://dx.doi.org/10.1002/adfm.200900166
20.
20. G. Eda, Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, C. W. Chen, and M. Chhowalla, Adv. Mater. 22, 505 (2010).
http://dx.doi.org/10.1002/adma.200901996
21.
21. D. Joung and S. I. Khondaker, Phys. Rev. B 86, 235423 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.235423
22.
22. D. Joung and S. I. Khondaker, J. Phys. Chem. C 117, 26776 (2013).
http://dx.doi.org/10.1021/jp408387b
23.
23. P. V. Kumar, M. Bernardi, and J. C. Grossman, ACS Nano 7, 1638 (2013).
http://dx.doi.org/10.1021/nn305507p
24.
24. B. Kang, S. Lim, W. H. Lee, S. B. Jo, and K. Cho, Adv. Mater. 25, 5856 (2013).
http://dx.doi.org/10.1002/adma.201302358
25.
25.See supplementary material at http://dx.doi.org/10.1063/1.4902881 for XPS of RGO, AFM image of RGO electrode, pentacene film morphology, transfer curve in linear regime, and summary of all devices.[Supplementary Material]
26.
26. D. Joung, A. Chunder, L. Zhai, and S. I. Khondaker, Nanotechnology 21, 165202 (2010).
http://dx.doi.org/10.1088/0957-4484/21/16/165202
27.
27. B. K. Sarker and S. I. Khondaker, ACS Nano 6, 4993 (2012).
http://dx.doi.org/10.1021/nn300544v
28.
28. X. Ou, L. Jiang, P. Chen, M. Zhu, W. Hu, M. Liu, J. Zhu, and H. Ju, Adv. Funct. Mater. 23, 2422 (2013).
http://dx.doi.org/10.1002/adfm.201202586
http://aip.metastore.ingenta.com/content/aip/journal/apl/105/22/10.1063/1.4902881
Loading
/content/aip/journal/apl/105/22/10.1063/1.4902881
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/105/22/10.1063/1.4902881
2014-12-01
2016-09-26

Abstract

One of the major bottlenecks in fabricating high performance organic field effect transistors (OFETs) is a large interfacial contact barrier between metal electrodes and organic semiconductors (OSCs) which makes the charge injection inefficient. Recently, reduced graphene oxide (RGO) has been suggested as an alternative electrode material for OFETs. RGO has tunable electronic properties and its conductivity can be varied by several orders of magnitude by varying the carbon fraction. However, whether the fraction of RGO in the electrode affects the performance of the fabricated OFETs is yet to be investigated. In this study, we demonstrate that the performance of OFETs with pentacene as OSC and RGO as electrode can be continuously improved by increasing the carbon fraction of RGO. When compared to control palladium electrodes, the mobility of the OFETs shows an improvement of ∼200% for 61% fraction RGO, which further improves to ∼500% for 80% RGO electrode. Similar improvements were also observed in current on-off ratio, on-current, and transconductance. Our study suggests that, in addition to π-π interaction at RGO/pentacene interface, the tunable electronic properties of RGO electrode have a significant role in OFETs performance.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/105/22/1.4902881.html;jsessionid=F9g2t3Zqg2YJjppvtCPI2Imn.x-aip-live-06?itemId=/content/aip/journal/apl/105/22/10.1063/1.4902881&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/105/22/10.1063/1.4902881&pageURL=http://scitation.aip.org/content/aip/journal/apl/105/22/10.1063/1.4902881'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,