Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/105/22/10.1063/1.4902990
1.
1. M. C. Scharber and N. S. Sariciftci, Prog. Polym. Sci. 38, 1929 (2013).
http://dx.doi.org/10.1016/j.progpolymsci.2013.05.001
2.
2. B. C. Thompson and J. M. J. Fréchet, Angew. Chem., Int. Ed. Engl. 47, 58 (2008).
http://dx.doi.org/10.1002/anie.200702506
3.
3. G. Chamberlain, Sol. Cells 8, 47 (1983).
http://dx.doi.org/10.1016/0379-6787(83)90039-X
4.
4. J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li, and Y. Yang, Nat. Commun. 4, 1446 (2013).
http://dx.doi.org/10.1038/ncomms2411
5.
5. S. A. Gevorgyan, M. V. Madsen, H. F. Dam, M. Jørgensen, C. J. Fell, K. F. Anderson, B. C. Duck, A. Mescheloff, E. A. Katz, A. Elschner, R. Roesch, H. Hoppe, M. Hermenau, M. Riede, and F. C. Krebs, Sol. Energy Mater. Sol. Cells 116, 187 (2013).
http://dx.doi.org/10.1016/j.solmat.2013.04.024
6.
6. C. H. Peters, I. T. Sachs-Quintana, J. P. Kastrop, S. Beaupré, M. Leclerc, and M. D. McGehee, Adv. Energy Mater. 1, 491 (2011).
http://dx.doi.org/10.1002/aenm.201100138
7.
7. H. Cao, W. He, Y. Mao, X. Lin, K. Ishikawa, J. H. Dickerson, and W. P. Hess, J. Power Sources 264, 168 (2014).
http://dx.doi.org/10.1016/j.jpowsour.2014.04.080
8.
8. V. Chellappan, G. M. Ng, M. J. Tan, W.-P. Goh, and F. Zhu, Appl. Phys. Lett. 95, 263305 (2009).
http://dx.doi.org/10.1063/1.3279135
9.
9. A. Seemann, H.-J. Egelhaaf, C. J. Brabec, and J. A. Hauch, Org. Electron. 10, 1424 (2009).
http://dx.doi.org/10.1016/j.orgel.2009.08.001
10.
10. C. H. Peters, I. T. Sachs-Quintana, W. R. Mateker, T. Heumueller, J. Rivnay, R. Noriega, Z. M. Beiley, E. T. Hoke, A. Salleo, and M. D. McGehee, Adv. Mater. 24, 663 (2012).
http://dx.doi.org/10.1002/adma.201103010
11.
11. F. C. Krebs and K. Norrman, Prog. Photovoltaics 15, 697 (2007).
http://dx.doi.org/10.1002/pip.794
12.
12. E. S. R. Bovill, J. Griffin, T. Wang, J. W. Kingsley, H. Yi, A. Iraqi, A. R. Buckley, and D. G. Lidzey, Appl. Phys. Lett. 102, 183303 (2013).
http://dx.doi.org/10.1063/1.4804294
13.
13. M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, Adv. Mater. 18, 789 (2006).
http://dx.doi.org/10.1002/adma.200501717
14.
14. D. C. Watters, J. Kingsley, H. Yi, T. Wang, A. Iraqi, and D. Lidzey, Org. Electron. 13, 1401 (2012).
http://dx.doi.org/10.1016/j.orgel.2012.03.039
15.
15. T. Wang, A. J. Pearson, A. D. F. Dunbar, P. A. Staniec, D. C. Watters, H. Yi, A. J. Ryan, R. A. L. Jones, A. Iraqi, and D. G. Lidzey, Adv. Funct. Mater. 22, 1399 (2012).
http://dx.doi.org/10.1002/adfm.201102510
16.
16. S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, Nat. Photonics 3, 297 (2009).
http://dx.doi.org/10.1038/nphoton.2009.69
17.
17. J. Liu, S. Shao, G. Fang, B. Meng, Z. Xie, and L. Wang, Adv. Mater. 24, 2774 (2012).
http://dx.doi.org/10.1002/adma.201200238
18.
18. Y. Sun, J. H. Seo, C. J. Takacs, J. Seifter, and A. J. Heeger, Adv. Mater. 23, 1679 (2011).
http://dx.doi.org/10.1002/adma.201004301
19.
19. Y. Sun, C. J. Takacs, S. R. Cowan, J. H. Seo, X. Gong, A. Roy, and A. J. Heeger, Adv. Mater. 23, 2226 (2011).
http://dx.doi.org/10.1002/adma.201100038
20.
20. S. Cho, J. H. Seo, S. H. Park, S. Beaupré, M. Leclerc, and A. J. Heeger, Adv. Mater. 22, 1253 (2010).
http://dx.doi.org/10.1002/adma.200903420
21.
21. H. Yi, S. Al-Faifi, A. Iraqi, D. C. Watters, J. Kingsley, and D. G. Lidzey, J. Mater. Chem. 21, 13649 (2011).
http://dx.doi.org/10.1039/c1jm12089a
22.
22. D. C. Watters, H. Yi, A. J. Pearson, J. Kingsley, A. Iraqi, and D. Lidzey, Macromol. Rapid Commun. 34, 1157 (2013).
http://dx.doi.org/10.1002/marc.201300258
23.
23. Z. Chen, H. Lemke, S. Albert-Seifried, M. Caironi, M. M. Nielsen, M. Heeney, W. Zhang, I. McCulloch, and H. Sirringhaus, Adv. Mater. 22, 2371 (2010).
http://dx.doi.org/10.1002/adma.200903711
24.
24. Q. Hou, Y. Xu, W. Yang, M. Yuan, J. Peng, and Y. Cao, J. Mater. Chem. 12, 2887 (2002).
http://dx.doi.org/10.1039/b203862e
25.
25. M. Bernius, M. Inbasekaran, E. Woo, W. Wu, and L. Wujkowski, J. Mater. Sci.: Mater. Electron. 11, 111 (2000).
http://dx.doi.org/10.1023/A:1008917128880
26.
26. G. Klärner, J.-I. Lee, M. H. Davey, and R. D. Miller, Adv. Mater. 11, 115 (1999).
http://dx.doi.org/10.1002/(SICI)1521-4095(199902)11:2<115::AID-ADMA115>3.0.CO;2-N
27.
27. W.-Y. Wong, Coord. Chem. Rev. 249, 971 (2005).
http://dx.doi.org/10.1016/j.ccr.2004.10.007
28.
28. S. Alem, T.-Y. Chu, S. C. Tse, S. Wakim, J. Lu, R. Movileanu, Y. Tao, F. Bélanger, D. Désilets, S. Beaupré, M. Leclerc, S. Rodman, D. Waller, and R. Gaudiana, Org. Electron. 12, 1788 (2011).
http://dx.doi.org/10.1016/j.orgel.2011.07.011
29.
29. A. A. B. Alghamdi, D. C. Watters, H. Yi, S. Al-Faifi, M. S. Almeataq, D. Coles, J. Kingsley, D. G. Lidzey, and A. Iraqi, J. Mater. Chem. A 1, 5165 (2013).
http://dx.doi.org/10.1039/c3ta00122a
30.
30. Y. W. Soon, H. Cho, J. Low, H. Bronstein, I. McCulloch, and J. R. Durrant, Chem. Commun. (Cambridge, U.K.) 49, 1291 (2013).
http://dx.doi.org/10.1039/c2cc38243a
31.
31. Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, Adv. Mater. 22, E135 (2010).
http://dx.doi.org/10.1002/adma.200903528
32.
32. A. M. Nardes, M. Kemerink, M. M. de Kok, E. Vinken, K. Maturova, and R. A. J. Janssen, Org. Electron. 9, 727 (2008).
http://dx.doi.org/10.1016/j.orgel.2008.05.006
33.
33. M. Kuş and S. Okur, Sens. Actuators, B 143, 177 (2009).
http://dx.doi.org/10.1016/j.snb.2009.08.055
34.
34. J. Huang, P. F. Miller, J. S. Wilson, A. J. de Mello, J. C. de Mello, and D. D. C. Bradley, Adv. Funct. Mater. 15, 290 (2005).
http://dx.doi.org/10.1002/adfm.200400073
35.
35.See http://www.heraeus-clevios.com/en/_technik/productdetail_1034017.aspx for information on PEDOT:PSS - Heraeus Clevios™ P VP Al 4083 (accessed 20 September 2014).
36.
36. E. T. Hoke, I. T. Sachs-Quintana, M. T. Lloyd, I. Kauvar, W. R. Mateker, A. M. Nardes, C. H. Peters, N. Kopidakis, and M. D. McGehee, Adv. Energy Mater. 2, 1351 (2012).
http://dx.doi.org/10.1002/aenm.201200169
http://aip.metastore.ingenta.com/content/aip/journal/apl/105/22/10.1063/1.4902990
Loading
/content/aip/journal/apl/105/22/10.1063/1.4902990
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/105/22/10.1063/1.4902990
2014-12-03
2016-09-26

Abstract

We report a comparative study based on the fabrication of polymer:fullerene photovoltaic (PV) devices incorporating carbazole, fluorene, and a PTB based co-polymer. We have explored the efficiency and performance of such devices when the active polymer:fullerene layer is deposited by spin-casting either under nitrogen or ambient conditions. We show that PV devices based on carbazole and fluorene based materials have very similar power conversion efficiencies when processed under both air and nitrogen, with other photobleaching measurements suggesting that such materials have comparatively enhanced photostability. Devices based on the PTB co-polymer, however, have reduced efficiency when processed in air.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/105/22/1.4902990.html;jsessionid=xzHRkeS2IuzhdVx5s9S62ahY.x-aip-live-02?itemId=/content/aip/journal/apl/105/22/10.1063/1.4902990&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/105/22/10.1063/1.4902990&pageURL=http://scitation.aip.org/content/aip/journal/apl/105/22/10.1063/1.4902990'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,