Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. S. T. Lee, Y. M. Wang, X. Y. Hou, and C. W. Tang, Appl. Phys. Lett. 74, 670 (1999).
2. I-W. Wu, Y.-H. Chen, P.-S. Wang, C.-G. Wang, S.-H. Hsu, and C.-I. Wu, Appl. Phys. Lett. 96, 013301 (2010).
3. A. Tada, Y. Geng, Q. Wei, K. Hashimoto, and K. Tajima, Nat. Mater. 10, 450 (2011).
4. K. S. Nalwa, J. A. Carr, R. C. Mahadevapuram, H. K. Kodali, S. Bose, Y. Chen, J. W. Petrich, B. Ganapathysubramanian, and S. Chaudhary, Energy Environ. Sci. 5, 7042 (2012).
5. A. Rao, P. C. Y. Chow, S. Gélinas, C. W. Schlenker, C.-Z. Li, H.-L. Yip, A. K.-Y. Jen, D. S. Ginger, and R. H. Friend, Nature 500, 435 (2013).
6. K. Vandewal1, S. Albrecht, E. T. Hoke, K. R. Graham, J. Widmer, J. D. Douglas, M. Schubert, W. R. Mateker, J. T. Bloking, G. F. Burkhard, A. Sellinger, J. M. J. Fréchet, A. Amassian, M. K. Riede, M. D. McGehee, D. Neher, and A. Salleo, Nat. Mater. 13, 63 (2014).
7. T. M. Burke and M. D. McGehee, Adv. Mater. 26, 1923 (2014).
8. H. Ishii, K. Sugiyama, E. Ito, and K. Seki, Adv. Mater. 11, 605 (1999).<605::AID-ADMA605>3.0.CO;2-Q
9. J. Hwang, A. Wan, and A. Kahn, Mater. Sci. Eng. R 64, 1 (2009).
10. S. Braun, W. R. Salaneck, and M. Fahlman, Adv. Mater. 21, 1450 (2009).
11. J. X. Tang, K. M. Lau, C. S. Lee, and S. T. Lee, Appl. Phys. Lett. 88, 232103 (2006).
12. S. Zhong, J. Q. Zhong, H. Y. Mao, J. L. Zhang, J. D. Lin, and W. Chen, Phys. Chem. Chem. Phys. 14, 14127 (2012).
13. H. Vázquez, W. Gao, F. Flores, and A. Kahn, Phys. Rev. B 71, 041306 (2005).
14. S. Braun, M. P. de Jong, W. Osikowicz, and W. R. Salaneck, Appl. Phys. Lett. 91, 202108 (2007).
15. S. Verlaak, D. Beljonne, D. Cheyns, C. Rolin, M. Linares, F. Castet, J. Cornil, and P. Heremans, Adv. Funct. Mater. 19, 3809 (2009).
16. H. Y. Mao, F. Bussolotti, D.-C. Qi, R. Wang, S. Kera, N. Ueno, A. T. S. Wee, and W. Chen, Org. Electron. 12, 534 (2011).
17. A. Wilke, P. Amsalem, J. Frisch, B. Bröker, A. Vollmer, and N. Koch, Appl. Phys. Lett. 98, 123304 (2011).
18.See supplementary material at for UPS and XPS spectra of the Au(111) substrate, the MoO3 film, and the ZnPc/C60 interface, calculated fraction of charged molecules at the organic heterojunction and the methods of electrostatic potential calculations.[Supplementary Material]
19. Irfan, M. Zhang, H. Ding, C. W. Tang, and Y. Gao, Org. Electron. 12, 1588 (2011).
20. M. Oehzelt, N. Koch, and G. Heimel, Nat. Commun. 5, 4174 (2014).
21. H. Wang, P. Amsalem, G. Heimel, I. Salzmann, N. Koch, and M. Oehzelt, Adv. Mater. 26, 925 (2014).
22. J. Niederhausen, P. Amsalem, A. Wilke, R. Schlensinger, S. Winkler, A. Vollmer, J. P. Rabe, and N. Koch, Phys. Rev. B 86, 081411(R) (2012).
23. P. Amsalem, J. Niederhausen, A. Wilke, G. Heimel, R. Schlesinger, S. Winkler, A. Vollmer, J. P. Rabe, and N. Koch, Phys. Rev. B 87, 035440 (2013).
24. M. Sayer and A. Mansingh, Phys. Rev. B 6, 46294643 (1972).
25. Y. Tanaka, K. Kanai, Y. Ouchi, and K. Seki, Chem. Phys. Lett. 441, 63 (2007).
26. S. H. Park, J. G. Jeong, H.-J. Kim, S.-H. Park, M.-H. Cho, S. W. Cho, Y. Yi, M. Y. Heo, and H. Sohn, Appl. Phys. Lett. 96, 013302 (2010).

Data & Media loading...


Article metrics loading...



The energy level alignment at interfaces between organic semiconductors is of direct relevance to understand charge carrier generation and recombination in organic electronic devices. Commonly, work function changes observed upon interface formation are interpreted as interface dipoles. In this study, using ultraviolet and X-ray photoelectron spectroscopy, complemented by electrostatic calculations, we find a huge work function decrease of up to 1.4 eV at the C (bottom layer)/zinc phthalocyanine (ZnPc, top layer) interface prepared on a molybdenum trioxide (MoO) substrate. However, detailed measurements of the energy level shifts and electrostatic calculations reveal that no interface dipole occurs. Instead, upon ZnPc deposition, a linear electrostatic potential gradient is generated across the C layer due to Fermi level pinning of ZnPc on the high work function C/MoO substrate, and associated band-bending within the ZnPc layer. This finding is generally of importance for understanding organic heterojunctions when Fermi level pinning is involved, as induced electrostatic fields alter the energy level alignment significantly.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd