Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. T. Kohno, T. Kuranaga, H. Kagevama, M. Ishii, N. Kasai, N. Nakamura, and H. Akimoto, “ LTPS AM-OLED display consisting of two-TFTs/one-capacitor pixel circuits for producing high-uniformity images,” IEEE Trans. Electron Devices 60, 37803786 (2013).
2. B. Hekmatshoar, K. H. Cherenack, A. Z. Kattamis, K. Long, S. Wagner, and J. C. Sturm, “ Highly stable amorphous-silicon thin-film transistors on clear plastic,” Appl. Phys. Lett. 93, 032103 (2008).
3. T. Kamiya, K. Nomura, and H. Hosono, “ Origins of high mobility and low operation voltage of amorphous oxide TFTs: Electronics structure, electron transport, defects and doping,” J. Disp. Technol. 5, 468483 (2009).
4. T. Kamiya, K. Nomura, and H. Hosono, “ Present status of amorphous In-Ga-Zn-O thin-film transistors,” Sci. Technol. Adv. Mater. 11, 044305 (2010).
5. J. K. Jeong, “ The status and perspectives of metal oxide thin-film transistors for active matrix flexible displays,” Semicond. Sci. Technol. 26, 034008 (2011).
6. T. L. Chen, R. Betancur, D. S. Ghosh, J. Martorell, and V. Pruneri, “ Efficient polymer solar cell employing an oxidized Ni capped Al:ZnO anode without the need of additional hole-transporting-layer,” Appl. Phys. Lett. 100, 013310 (2012).
7. S. Rahmane, M. A. Djouadi, M. S. Aida, N. Barreau, B. Abdllah, and N. H. Zoubir, “ Power and pressure effects upon magnetron sputtered aluminum doped ZnO films properties,” Thin Solid Films 519, 510 (2010).
8. J.-I. Nomoto, M. Konagai, K. Okada, T. Ito, T. Miyata, and T. Minami, “ Comparative study of resistivity characteristics between transparent conducting AZO and GZO thin films for use at high temperatures,” Thin Solid Films 518, 29372940 (2010).
9. Z. Z. You and G. J. Hua, “ Electrical, optical and microstructural properties of transparent conducting GZO thin films deposited by magnetron sputtering,” J. Alloys Compd. 530, 1117 (2012).
10. C. Avis, S. H. Kim, J. H. Hur, J. Jang, and W. I. Milne, “ Coplanar ZnO thin-film transistor using boron ion doped source/drain contacts,” Electrochem. Solid-State Lett. 12, J93J95 (2009).
11. Z. Ye, L. Lu, and M. Wong, “ Zinc-oxide thin-film transistor with self-aligned source/drain regions doped with implanted boron for enhanced thermal stability,” IEEE Trans. Electron Devices 59, 393399 (2012).
12. K. Ip, M. E. Overberg, Y. W. Heo, D. P. Norton, S. J. Pearton, S. O. Kucheyev, C. Jagadish, J. S. Williams, R. G. Wilson, and J. M. Zavada, “ Thermal stability of ion-implanted hydrogen in ZnO,” Appl. Phys. Lett. 81, 39963998 (2002).
13. K. Ip, M. E. Overberg, Y. W. Heo, D. P. Norton, S. J. Pearton, C. E. Stutz, B. Luo, F. Ren, and D. C. Look, “ Hydrogen incorporation and diffusivity in plasma-exposed bulk ZnO,” Appl. Phys. Lett. 82, 385387 (2003).
14. H. S. Bae, J. H. Kim, and S. Im, “ Mobility enhancement in ZnO-based TFTs by H treatment,” Electrochem. Solid-State Lett. 7, G279G281 (2004).
15. B. D. Ahn, H. S. Shin, H. J. Kim, J.-S. Park, and J. K. Jeong, “ Comparison of the effects of Ar and H2 plasmas on the performance of homojunctioned amorphous indium gallium zinc oxide thin film transistors,” Appl. Phys. Lett. 93, 203506 (2008).
16. L.-Y. Chen, W.-H. Chen, J.-J. Wang, F. C.-N. Hong, and Y.-K. Su, “ Hydrogen-doped high conductivity ZnO films deposited by radio-frequency magnetron sputtering,” Appl. Phys. Lett. 85, 5628 (2004).
17. O. Nakagawara, Y. Kishimoto, H. Seto, Y. Koshido, Y. Yoshino, and T. Makino, “ Moisture-resistant ZnO transparent conductive films with Ga heavy doping,” Appl. Phys. Lett. 89, 091904 (2006).
18. R. Chen, W. Zhou, M. Zhang, M. Wong, and H.-S. Kwok, “ Self-aligned indium-gallium-zinc oxide thin-film transistor with phosphorus-doped source/drain regions,” IEEE Electron Device Lett. 33, 11501152 (2012).
19. R. Chen, W. Zhou, M. Zhang, M. Wong, and H.-S. Kwok, “ Self-aligned indium-gallium-zinc oxide thin-film transistor with source/drain regions doped by implanted arsenic,” IEEE Electron Device Lett. 34, 6062 (2013).
20. Z. Ye and M. Wong, “ Characteristics of thin-film transistors fabricated on fluorinated zinc oxide,” IEEE Electron Device Lett. 33, 549551 (2012).
21. Y.-Z. Tsai, N.-F. Wang, and C.-L. Tsai, “ Fluorine-doped ZnO transparent conducting thin films prepared by radio frequency magnetron sputtering,” Thin Solid Films 518, 49554959 (2010).
22. J. Park, I. Song, S. Kim, S. Kim, C. Kim, J. Lee, H. Lee, E. Lee, H. Yin, K.-K. Kim, K.-W. Kwon, and Y. Park, “ Self-aligned top-gate amorphous gallium indium zinc oxide thin film transistors,” Appl. Phys. Lett. 93, 053501 (2008).
23. J.-S. Park, J. K. Jeong, Y.-G. Mo, H. D. Kim, and S.-I. Kim, “ Improvements in the device characteristics of amorphous indium gallium zinc oxide thin-film transistors by Ar plasma treatment,” Appl. Phys. Lett. 90, 262106 (2007).
24. J. H. Na, M. Kitamura, and Y. Arakawa, “ High field-effect mobility amorphous InGaZnO transistors with aluminum electrodes,” Appl. Phys. Lett. 93, 063501 (2008).
25. H.-Y. Jeong, Y.-J. Lee, and B.-Y. Lee, “ Array substrate and method of fabricating the same,” U.S. patent IPN No. 20140159033 (2014).
26. S. Kim, J. Park, C. Kim, I. Song, S. Kim, S. Park, H. Yin, H.-I. Lee, E. Lee, and Y. Park, “ Source/drain formation of self-aligned top-gate amorphous GaInZnO thin-film transistors by NH3 plasma treatment,” IEEE Trans. Electron Devices 30, 374376 (2009).

Data & Media loading...


Article metrics loading...



Transparent conductive electrodes based on hydrogen (H)-doped zinc oxide (ZnO) have been proposed for active-matrix (AM) display applications. When fabricated with optimal H plasma power and optimal plasma treatment time, the resulting ZnO:H films exhibit low sheet resistance of 200 Ω/◻ and high average transmission of 85% at a film thickness of 150 nm. The demonstrated transparent conductive ZnO:H films can potentially replace indium-tin-oxide and serve as pixel electrodes for organic light-emitting diodes as well as source/drain electrodes for ZnO-based thin-film transistors. Use of the proposed ZnO:H electrodes means that two photomask stages can be removed from the fabrication process flow for ZnO-based AM backplanes.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd