Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/105/22/10.1063/1.4903514
1.
1. F. C. Krebs, J. Fyenbo, and M. Jørgensen, J. Mater. Chem. 20, 8994 (2010).
http://dx.doi.org/10.1039/c0jm01178a
2.
2. T. D. Nielsen, C. Cruickshank, S. Foged, J. Thorsen, and F. C. Krebs, Sol. Energy Mater. Sol. Cells 94, 1553 (2010).
http://dx.doi.org/10.1016/j.solmat.2010.04.074
3.
3. C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, Light: Sci. Appl. 1, e30 (2012).
http://dx.doi.org/10.1038/lsa.2012.30
4.
4. F. C. Krebs, T. D. Nielsen, J. Fyenbo, M. Wadstrøm, and M. S. Pedersen, Energy Environ. Sci. 3, 512 (2010).
http://dx.doi.org/10.1039/b918441d
5.
5. J. Jo, S. I. Na, S. S. Kim, T. W. Lee, Y. Chung, S. J. Kang, D. Vak, and D. Y. Kim, Adv. Funct. Mater. 19, 2398 (2009).
http://dx.doi.org/10.1002/adfm.200900183
6.
6. P. Schilinsky, C. Waldauf, and C. J. Brabec, Appl. Phys. Lett. 81, 3885 (2002).
http://dx.doi.org/10.1063/1.1521244
7.
7. S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, Nat. Photonics 3, 297 (2009).
http://dx.doi.org/10.1038/nphoton.2009.69
8.
8. J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, ACS Nano 5, 959 (2011).
http://dx.doi.org/10.1021/nn102295p
9.
9. R. A. Taylor, T. Otanicar, and G. Rosengarten, Light: Sci. Appl. 1, e34 (2012).
http://dx.doi.org/10.1038/lsa.2012.34
10.
10. C. Xiang, W. Koo, F. So, H. Sasabe, and J. Kido, Light: Sci. Appl. 2, e74 (2013).
http://dx.doi.org/10.1038/lsa.2013.30
11.
11. X. Fan, C. H. Cui, G. J. Fang, J. Z. Wang, S. Z. Li, F. Cheng, H. Long, and Y. F. Li, Adv. Funct. Mater 22, 585 (2012).
http://dx.doi.org/10.1002/adfm.201102054
12.
12. P. K. Jain, S. Eustis, and M. A. El-Sayed, J. Phys. Chem. B 110, 18243 (2006).
http://dx.doi.org/10.1021/jp063879z
13.
13. K. R. Catchpole and A. Polman, Appl. Phys. Lett. 93, 191113 (2008).
http://dx.doi.org/10.1063/1.3021072
14.
14. A. Y. Mahmouda, J. M. Zhang, and D. L. Mac, Org. Electron. 13, 3102 (2012).
http://dx.doi.org/10.1016/j.orgel.2012.09.015
15.
15. C. F. Guo, T. S. Sun, F. Cao, Q. Liu, and Z. F. Ren, Light: Sci. Appl. 3, e161 (2014).
http://dx.doi.org/10.1038/lsa.2014.42
16.
16. L. L. Huang, X. Z. Chen, B. F. Bai, Q. F. Tan, G. F. Jin, T. Zentgraf, and S. Zhang, Light: Sci. Appl. 2, e70 (2013).
http://dx.doi.org/10.1038/lsa.2013.26
17.
17. X. Chen, B. H. Jia, Y. A. Zhang, and M. Gu, Light: Sci. Appl. 2, e92 (2013).
http://dx.doi.org/10.1038/lsa.2013.48
18.
18. Z. Holman, S. Wolf, and C. Ballif, Light: Sci. Appl. 2, e106 (2013).
http://dx.doi.org/10.1038/lsa.2013.62
19.
19. C. Y. Liu, K. W. Chang, W. B. Guo, L. Hao, L. Shen, W. Y. Chen, and D. W. Yan, Appl. Phys. Lett. 105, 073306 (2014).
http://dx.doi.org/10.1063/1.4893994
20.
20. S. S. Seo, X. H. Wang, and D. Murray, Ionics 15, 67 (2009).
http://dx.doi.org/10.1007/s11581-008-0223-2
21.
21. J. Perez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzan, Coord. Chem. Rev. 249, 1870 (2005).
http://dx.doi.org/10.1016/j.ccr.2005.01.030
22.
22. J. Meyer, S. Hamwi, M. Kroger, W. Kowalshy, T. Riedl, and A. Kahn, Adv. Mater. 24, 5408 (2012).
http://dx.doi.org/10.1002/adma.201201630
23.
23. M. Kroger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, and A. Kahn, Org. Electron. 10, 932 (2009).
http://dx.doi.org/10.1016/j.orgel.2009.05.007
24.
24. Y. H. Su, Y. F. Ke, S. L. Cai, and Q. Y. Yao, Light: Sci. Appl. 1, e14 (2012).
http://dx.doi.org/10.1038/lsa.2012.14
25.
25. D. Lepage, A. Jimenez, J. Beauvais, and J. J. Dubowski, Light: Sci. Appl. 1, e28 (2012).
http://dx.doi.org/10.1038/lsa.2012.28
26.
26. X. H. Li, W. C. H. Choy, L. J. Huo, F. X. Xie, W. E. I. Sha, B. F. Ding, X. Guo, Y. F. Li, J. H. Hou, J. B. You, and Y. Yang, Adv. Mater. 24, 3046 (2012).
http://dx.doi.org/10.1002/adma.201200120
27.
27. Y. Y. He, C. Y. Liu, H. M. Jiang, W. B. Guo, L. Shen, and W. Y. Chen, Synth. Met. 195, 117 (2014).
http://dx.doi.org/10.1016/j.synthmet.2014.05.020
28.
28. W. B. Guo, K. Z. Zheng, W. F. Xie, L. Sun, L. Shen, C. Y. Liu, Y. Y. He, and Z. H. Zhang, Sol. Energy Mater. Sol. Cells 124, 126 (2014).
http://dx.doi.org/10.1016/j.solmat.2014.01.038
29.
29. D. H. Wang, D. Y. Kim, K. W. Choi, J. H. Seo, S. H. Im, J. H. Park, O. O. Park, and A. J. Heeger, Angew. Chem., Int. Ed. 50, 5519 (2011).
http://dx.doi.org/10.1002/anie.201101021
30.
30. D. D. S. Fung, L. F. Qiao, W. C. H. Choy, C. D. Wang, W. E. I. Sha, F. X. Xie, and S. L. He, J. Mater. Chem. 21, 16349 (2011).
http://dx.doi.org/10.1039/c1jm12820e
31.
31. E. D. Kosten, J. H. Atwater, J. Parsons, A. Polman, and H. A. Atwater, Light: Sci. Appl. 2, e45 (2013).
http://dx.doi.org/10.1038/lsa.2013.1
32.
32. C. C. D. Wang, W. C. H. Choy, C. Duan, D. D. S. Fung, W. E. I. Sha, F.-X. Xie, F. Huang, and Y. Cao, J. Mater. Chem. 22, 1206 (2012).
http://dx.doi.org/10.1039/c1jm14150c
http://aip.metastore.ingenta.com/content/aip/journal/apl/105/22/10.1063/1.4903514
Loading
/content/aip/journal/apl/105/22/10.1063/1.4903514
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/105/22/10.1063/1.4903514
2014-12-04
2016-12-11

Abstract

Gold nanorods (Au NRs) are synthesized and doped into titanium dioxide (TiO) buffer layer of polymer solar cells based on low bandgap polymer semiconductor, and the photovoltaic properties of devices doping with different amount of Au NRs are measured and investigated. Enhanced light trapping has been realized through localized surface plasmon resonance and scattering effect of Au NRs, resulting in improved short circuit current density (J) while maintaining the corresponding open-circuit voltage (V). Also, higher electrical conductivity of TiO layer has been obtained owing to introduction of high-conductivity Au NRs, which contributes to the improved J as well. The maximum power conversion efficiency of 6.72% is obtained while introducing 1.5 wt. % Au NRs into the TiO, leading to a 15.5% enhancement compared with the control devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/105/22/1.4903514.html;jsessionid=XZG_ETg1AQ8plUyjmWPnoBfC.x-aip-live-03?itemId=/content/aip/journal/apl/105/22/10.1063/1.4903514&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/105/22/10.1063/1.4903514&pageURL=http://scitation.aip.org/content/aip/journal/apl/105/22/10.1063/1.4903514'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,