Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. M. Magliulo, A. Mallardi, M. Y. Mulla, S. Cotrone, B. R. Pistillo, P. Favia, I. V. Lundin, G. Palazzo, and L. Torsi, Adv. Mater. 25, 2090 (2013).
2. S. Ono, R. Häusermann, D. Chiba, K. Shimamura, T. Ono, and B. Batlogg, Appl. Phys. Lett. 104, 013307 (2014).
3. J. R. H. Shaw-Stewart, T. Mattle, T. K. Lippert, M. Nagel, F. A. Nüesch, and A. Wokaun, J. Appl. Phys. 113, 043104 (2013).
4. X. Shi, J. Liu, J. Wang, X. Wu, Y. Zheng, and G. He, Org. Electron. 15, 2408 (2014).
5. O. L. Griffith and S. R. Forrest, Nano Lett. 14, 2353 (2014).
6. T. W. Kim, Y. Yang, F. Li, and W. L. Kwan, NPG Asia Mater. 4, e18 (2012).
7. D. Y. Yun, N. H. Lee, H. S. Kim, S. W. Lee, and T. W. Kim, Appl. Phys. Lett. 104, 023304 (2014).
8. J. C. Scott, Science 304, 62 (2004).
9. T. Kimura and M. Hara, Appl. Phys. Lett. 97, 182501 (2010).
10. K. C. Chiang and T. E. Hsieh, Nanotechnology 23, 225703 (2012).
11. C. W. Tseng, D. C. Huang, and Y. T. Tao, Appl. Mater. Interfaces 5, 9528 (2013).
12. D. Y. Yun, H. M. Park, S-W. Kim, S. W. Kim, and T. W. Kim, Carbon 75, 244 (2014).
13. D. I. Son, D. H. Park, W. K. Choi, S. H. Cho, W. T. Kim, and T. W. Kim, Nanotechnology 20, 195203 (2009).
14. D. I. Son, C. H. You, J. H. Jung, and T. W. Kim, Appl. Phys. Lett. 97, 013304 (2010).
15. Q. Wei, Y. Lin, E. R. Anderson, A. L. Briseno, S. P. Gido, and J. J. Watkins, ACS Nano 6, 1188 (2012).
16. D. E. Nam, W. S. Song, and H. Yang, J. Mater. Chem. 21, 18220 (2011).
17. S. Huang, S. Banerjee, R. T. Tung, and S. Oda, J. Appl. Phys. 94, 7261 (2003).
18. D. Y. Yun, J. M. Son, T. W. Kim, S. W. Kim, and S. W. Kim, Appl. Phys. Lett. 98, 243306 (2011).
19. S. M. Jung, H. J. Kim, B. J. Kim, Y. S. Kim, T. S. Yoon, and H. H. Lee, Appl. Phys. Lett. 97, 153302 (2010).
20. W. T. Kim, D. Y. Yun, J. H. Jung, and T. W. Kim, J. Nanosci. Nanotechnol. 11, 791 (2011).
21. D. I. Son, T. W. Kim, J. H. Shim, J. H. Jung, D. U. Lee, J. M. Lee, W. I. Park, and W. K. Choi, Nano Lett. 10, 2441 (2010).
22. J. A. Hagen, W. Li, A. J. Steckl, and J. G. Grote, Appl. Phys. Lett. 88, 171109 (2006).

Data & Media loading...


Article metrics loading...



Nonvolatile memory devices based on CuInS (CIS) quantum dots (QDs) embedded in a polymethylmethacrylate (PMMA) layer were fabricated using spin-coating method. The memory window widths of the capacitance-voltage (C-V) curves for the Al/CIS QDs embedded in PMMA layer/p-Si devices were 0.3, 0.6, and 1.0 V for sweep voltages of ±3, ±5, and ±7 V, respectively. Capacitance-cycle data demonstrated that the charge-trapping capability of the devices with an ON/OFF ratio value of 2.81 × 10−10 was maintained for 8 × 103 cycles without significant degradation and that the extrapolation of the ON/OFF ratio value to 1 × 106 cycles converged to 2.40 × 10−10, indicative of the good stability of the devices. The memory mechanisms for the devices are described on the basis of the C-V curves and the energy-band diagrams.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd