Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/105/23/10.1063/1.4903739
1.
1. V. Dediu, M. Murgia, F. Matacotta, C. Taliani, and S. Barbanera, Solid State Commun. 122, 181 (2002).
http://dx.doi.org/10.1016/S0038-1098(02)00090-X
2.
2. Z. H. Xiong, D. Wu, Z. Valy Vardeny, and J. Shi, Nature 427, 821 (2004).
http://dx.doi.org/10.1038/nature02325
3.
3. A. R. Rocha, V. Garcia-Suarez, S. W. Bailey, C. J. Lambert, J. Ferrer, and S. Sanvito, Nat. Mater. 4, 335 (2005).
http://dx.doi.org/10.1038/nmat1349
4.
4. T. S. Santos, J. S. Lee, P. Migdal, I. C. Lekshmi, B. Satpati, and J. S. Moodera, Phys. Rev. Lett. 98, 016601 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.016601
5.
5. S. Sanvito, Chem. Soc. Rev. 40, 3336 (2011).
http://dx.doi.org/10.1039/C1CS15047B
6.
6. J. S. Jiang, J. E. Pearson, and S. D. Bader, Phys. Rev. Lett. 106, 156807 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.156807
7.
7. R. Vincent, S. Klyatskaya, M. Ruben, W. Wernsdorfer, and F. Balestro, Nature 488, 357 (2012).
http://dx.doi.org/10.1038/nature11341
8.
8. T. D. Nguyen, E. Ehrenfreund, and Z. V. Vardeny, Science 337, 204 (2012).
http://dx.doi.org/10.1126/science.1223444
9.
9. E. R. Nowak, R. D. Merithew, M. B. Weissman, I. Bloom, and S. S. P. Parkin, J. Appl. Phys. 84, 6195 (1998).
http://dx.doi.org/10.1063/1.368936
10.
10. R. Guerrero, F. G. Aliev, Y. Tserkovnyak, T. S. Santos, and J. S. Moodera, Phys. Rev. Lett. 97, 266602 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.266602
11.
11. R. Guerrero, D. Herranz, F. G. Aliev, F. Greullet, C. Tiusan, M. Hehn, and F. Montaigne, Appl. Phys. Lett. 91, 132504 (2007).
http://dx.doi.org/10.1063/1.2793619
12.
12. J. Scola, H. Polovy, C. Fermon, M. Pannetier-Lecoeur, G. Feng, K. Fahy, and J. M. D. Coey, Appl. Phys. Lett. 90, 252501 (2007).
http://dx.doi.org/10.1063/1.2749433
13.
13. J. M. Almeida, P. Wisniowski, and P. Freitas, IEEE Trans. Magn. 44, 2569 (2008).
http://dx.doi.org/10.1109/TMAG.2008.2002604
14.
14. K. Sekiguchi, T. Arakawa, Y. Yamauchi, K. Chida, M. Yamada, H. Takahashi, D. Chiba, K. Kobayashi, and T. Ono, Appl. Phys. Lett. 96, 252504 (2010).
http://dx.doi.org/10.1063/1.3456548
15.
15. T. Arakawa, K. Sekiguchi, S. Nakamura, K. Chida, Y. Nishihara, D. Chiba, K. Kobayashi, A. Fukushima, S. Yuasa, and T. Ono, Appl. Phys. Lett. 98, 202103 (2011).
http://dx.doi.org/10.1063/1.3590921
16.
16. T. Tanaka, T. Arakawa, M. Maeda, K. Kobayashi, Y. Nishihara, T. Ono, T. Nozaki, A. Fukushima, and S. Yuasa, Appl. Phys. Lett. 105, 042405 (2014).
http://dx.doi.org/10.1063/1.4891556
17.
17. N. Clément, S. Pleutin, O. Seitz, S. Lenfant, and D. Vuillaume, Phys. Rev. B 76, 205407 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.205407
18.
18. A. A. Balandin, Nat. Nanotechnol. 8, 549 (2013).
http://dx.doi.org/10.1038/nnano.2013.144
19.
19. P. Rocha, H. Gomes, L. Vandamme, D. De Leeuw, S. Meskers, and P. van de Weijer, in 22nd International Conference on Noise and Fluctuations (ICNF) (IEEE, 2013), pp. 14.
http://dx.doi.org/10.1109/ICNF.2013.6578947
20.
20. M. Tsutsui, M. Taniguchi, and T. Kawai, Nat. Commun. 1, 138 (2010).
http://dx.doi.org/10.1038/ncomms1141
21.
21. J. Schaffert, M. Cottin, A. Sonntag, H. Karacuban, C. Bobisch, N. Lorente, J.-P. Gauyacq, and R. Muller, Nat. Mater. 12, 223 (2012).
http://dx.doi.org/10.1038/nmat3527
22.
22. T. Keevers, A. Danos, T. Schmidt, and D. McCamey, Nat. Nanotechnol. 8, 886 (2013).
http://dx.doi.org/10.1038/nnano.2013.261
23.
23. Y. Blanter and M. Bttiker, Phys. Rep. 336, 1 (2000).
http://dx.doi.org/10.1016/S0370-1573(99)00123-4
24.
24. B. R. Bułka, J. Martinek, G. Michałek, and J. Barnaś, Phys. Rev. B 60, 12246 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.12246
25.
25. Y. Tserkovnyak and A. Brataas, Phys. Rev. B 64, 214402 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.214402
26.
26. R. López and D. Sánchez, Phys. Rev. Lett. 90, 116602 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.116602
27.
27. A. Thielmann, M. H. Hettler, J. König, and G. Schön, Phys. Rev. B 68, 115105 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.115105
28.
28. A. Cottet, W. Belzig, and C. Bruder, Phys. Rev. Lett. 92, 206801 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.206801
29.
29. W. Belzig, Phys. Rev. B 71, 161301 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.161301
30.
30. F. M. Souza, A. P. Jauho, and J. C. Egues, Phys. Rev. B 78, 155303 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.155303
31.
31. A. L. Chudnovskiy, J. Swiebodzinski, and A. Kamenev, Phys. Rev. Lett. 101, 066601 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.066601
32.
32. F. G. Aliev, E. Kunnen, K. Temst, K. Mae, G. Verbanck, J. Barnas, V. V. Moshchalkov, and Y. Bruynseraede, Phys. Rev. Lett. 78, 134 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.134
33.
33. N. L. Schneider, J. T. , M. Brandbyge, and R. Berndt, Phys. Rev. Lett. 109, 186601 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.186601
34.
34. K.-S. Li, Y.-M. Chang, S. Agilan, J.-Y. Hong, J.-C. Tai, W.-C. Chiang, K. Fukutani, P. A. Dowben, and M.-T. Lin, Phys. Rev. B 83, 172404 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.172404
35.
35. J.-Y. Hong, K.-H. Ou Yang, B.-Y. Wang, K.-S. Li, H.-W. Shiu, C.-H. Chen, Y.-L. Chan, D.-H. Wei, F.-H. Chang, H.-J. Lin et al., Appl. Phys. Lett. 104, 083301 (2014).
http://dx.doi.org/10.1063/1.4866164
36.
36.See the supplementary material at http://dx.doi.org/10.1063/1.4903739 for details about: estimation of shot noise, dependence of the conductance with the PTCDA thickness, comparison of the conductance vs. temperature with hopping models, and IETS results.[Supplementary Material]
37.
37. D. A. Tenne, S. Park, T. U. Kampen, A. Das, R. Scholz, and D. R. T. Zahn, Phys. Rev. B 61, 14564 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.14564
38.
38. J. J. H. M. Schoonus, P. G. E. Lumens, W. Wagemans, J. T. Kohlhepp, P. A. Bobbert, H. J. M. Swagten, and B. Koopmans, Phys. Rev. Lett. 103, 146601 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.146601
39.
39. Y. Yamauchi, K. Sekiguchi, K. Chida, T. Arakawa, S. Nakamura, K. Kobayashi, T. Ono, T. Fujii, and R. Sakano, Phys. Rev. Lett. 106, 176601 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.176601
40.
40. E. Onac, F. Balestro, B. Trauzettel, C. F. J. Lodewijk, and L. P. Kouwenhoven, Phys. Rev. Lett. 96, 026803 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.026803
41.
41. Y. Okazaki, S. Sasaki, and K. Muraki, Phys. Rev. B 87, 041302 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.041302
42.
42. N. Lambert, R. Aguado, and T. Brandes, Phys. Rev. B 75, 045340 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.045340
43.
43. G. Kießlich, E. Schöll, T. Brandes, F. Hohls, and R. J. Haug, Phys. Rev. Lett. 99, 206602 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.206602
44.
44. H. Vázquez, R. Oszwaldowski, P. Pou, J. Ortega, R. Pérez, F. Flores, and A. Kahn, EPL 65, 802 (2004).
http://dx.doi.org/10.1209/epl/i2003-10131-2
45.
45. S. Yogev, R. Matsubara, M. Nakamura, U. Zschieschang, H. Klauk, and Y. Rosenwaks, Phys. Rev. Lett. 110, 036803 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.036803
46.
46. S. Braun, W. R. Salaneck, and M. Fahlman, Adv. Mater. 21, 1450 (2009).
http://dx.doi.org/10.1002/adma.200802893
47.
47. J. P. Cascales, D. Herranz, F. G. Aliev, T. Szczepański, V. K. Dugaev, J. Barnaś, A. Duluard, M. Hehn, and C. Tiusan, Phys. Rev. Lett. 109, 066601 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.066601
http://aip.metastore.ingenta.com/content/aip/journal/apl/105/23/10.1063/1.4903739
Loading
/content/aip/journal/apl/105/23/10.1063/1.4903739
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/105/23/10.1063/1.4903739
2014-12-08
2016-09-27

Abstract

Organic molecules have recently revolutionized ways to create new spintronic devices. Despite intense studies, the statistics of tunneling electrons through organic barriers remains unclear. Here, we investigate conductance and shot noise in magnetic tunnel junctions with 3,4,9,10-perylene-teracarboxylic dianhydride (PTCDA) barriers a few nm thick. For junctions in the electron tunneling regime, with magnetoresistance ratios between 10% and 40%, we observe superpoissonian shot noise. The Fano factor exceeds in 1.5–2 times the maximum values reported for magnetic tunnel junctions with inorganic barriers, indicating spin dependent bunching in tunneling. We explain our main findings in terms of a model which includes tunneling through a two level (or multilevel) system, originated from interfacial bonds of the PTCDA molecules. Our results suggest that interfaces play an important role in the control of shot noise when electrons tunnel through organic barriers.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/105/23/1.4903739.html;jsessionid=9XQu4gmkWRb6-kNgK1mjhwts.x-aip-live-03?itemId=/content/aip/journal/apl/105/23/10.1063/1.4903739&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/105/23/10.1063/1.4903739&pageURL=http://scitation.aip.org/content/aip/journal/apl/105/23/10.1063/1.4903739'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,