Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/105/23/10.1063/1.4904092
1.
1. S. W. Hell, Nat. Methods 6, 24 (2009).
http://dx.doi.org/10.1038/nmeth.1291
2.
2. H. Blom and J. Widengren, Curr. Opin. Chem. Biol. 20, 127 (2014).
http://dx.doi.org/10.1016/j.cbpa.2014.06.004
3.
3. D. Busko, S. Baluschev, D. Crespy, A. Turshatov, and K. Landfester, Micron 43, 583 (2012).
http://dx.doi.org/10.1016/j.micron.2011.10.003
4.
4. S. W. Hell and J. Wichmann, Opt. Lett. 19, 780 (1994).
http://dx.doi.org/10.1364/OL.19.000780
5.
5. J. R. Moffitt, C. Osseforth, and J. Michaelis, Opt. Express 19, 4242 (2011).
http://dx.doi.org/10.1364/OE.19.004242
6.
6. G. Vicidomini, G. Moneron, K. Y. Han, V. Westphal, H. Ta, M. Reuss, J. Engelhardt, C. Eggeling, and S. W. Hell, Nat. Methods 8, 571 (2011).
http://dx.doi.org/10.1038/nmeth.1624
7.
7. G. Vicidomini, A. Schönle, H. Ta, K. Y. Han, G. Moneron, C. Eggeling, and S. W. Hell, PLoS ONE 8, e54421 (2013).
http://dx.doi.org/10.1371/journal.pone.0054421
8.
8. G. Vicidomini, I. Coto Hernández, M. d'Amora, F. Cella Zanacchi, P. Bianchini, and A. Diaspro, Methods 66, 124 (2014).
http://dx.doi.org/10.1016/j.ymeth.2013.06.029
9.
9.See supplementary material at http://dx.doi.org/10.1063/1.4904092 for E-PSF modeling, MI-RL algorithm derivation, random phantoms and synthetic images generation, and computational features.[Supplementary Material]
10.
10. M. Bertero, P. Boccacci, G. Desiderá, and G. Vicidomini, Inverse Prob. 25, 123006 (2009).
http://dx.doi.org/10.1088/0266-5611/25/12/123006
11.
11. G. Vicidomini, P. Mondal, and A. Diaspro, Opt. Lett. 31, 3582 (2006).
http://dx.doi.org/10.1364/OL.31.003582
12.
12. P. Mondal, G. Vicidomini, and A. Diaspro, Appl. Phys. Lett. 92, 103902 (2008).
http://dx.doi.org/10.1063/1.2888177
13.
13. G. Vicidomini, P. Boccacci, A. Diaspro, and M. Bertero, J. Microsc. 234, 47 (2009).
http://dx.doi.org/10.1111/j.1365-2818.2009.03150.x
14.
14. F.-X. Dupé, J. M. Fadili, and J.-L. Starck, IEEE Trans. Image Process. 18, 310 (2009).
http://dx.doi.org/10.1109/TIP.2008.2008223
15.
15. P. Mondal, G. Vicidomini, and A. Diaspro, J. Appl. Phys. 102, 044701 (2007).
http://dx.doi.org/10.1063/1.2770961
16.
16. G. Vicidomini, R. Schmidt, A. Egner, S. Hell, and A. Schönle, Opt. Express 18, 10154 (2010).
http://dx.doi.org/10.1364/OE.18.010154
17.
17. G. Vicidomini, S. Hell, and A. Schönle, Opt. Lett. 34, 3583 (2009).
http://dx.doi.org/10.1364/OL.34.003583
18.
18. W. H. Richardson, J. Opt. Soc. Am. 62, 55 (1972).
http://dx.doi.org/10.1364/JOSA.62.000055
19.
19. L. B. Lucy, Astron. J. 79, 745 (1974).
http://dx.doi.org/10.1086/111605
20.
20. M. Ingaramo, A. G. York, E. Hoogendoorn, M. Postma, H. Shroff, and G. H. Patterson, ChemPhysChem 15, 794 (2014).
http://dx.doi.org/10.1002/cphc.201300831
21.
21. Y. Wang, C. Kuang, Z. Gu, Y. Xu, S. Li, X. Hao, and X. Liu, Opt. Eng. 52, 093107 (2013).
http://dx.doi.org/10.1117/1.OE.52.9.093107
22.
22. M. R. Varma, K. Rajan, and P. P. Mondal, AIP Adv. 2, 032174 (2012).
http://dx.doi.org/10.1063/1.4754604
23.
23. R. Zanella, G. Zanghirati, R. Cavicchioli, L. Zanni, P. Boccacci, M. Bertero, and G. Vicidomini, Sci. Rep. 3, 2523 (2013).
http://dx.doi.org/10.1038/srep02523
24.
24. X. Hao, C. Kuang, Z. Gu, S. Li, J. Ge, and X. Liu, Opt. Lett. 38, 1001 (2013).
http://dx.doi.org/10.1364/OL.38.001001
http://aip.metastore.ingenta.com/content/aip/journal/apl/105/23/10.1063/1.4904092
Loading
/content/aip/journal/apl/105/23/10.1063/1.4904092
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/105/23/10.1063/1.4904092
2014-12-11
2016-09-29

Abstract

Time-gated detection, namely, only collecting the fluorescence photons after a time-delay from the excitation events, reduces complexity, cost, and illumination intensity of a stimulated emission depletion (STED) microscope. In the gated continuous-wave- (CW-) STED implementation, the spatial resolution improves with increased time-delay, but the signal-to-noise ratio (SNR) reduces. Thus, in sub-optimal conditions, such as a low photon-budget regime, the SNR reduction can cancel-out the expected gain in resolution. Here, we propose a method which does not discard photons, but instead collects all the photons in different time-gates and recombines them through a multi-image deconvolution. Our results, obtained on simulated and experimental data, show that the SNR of the restored image improves relative to the gated image, thereby improving the effective resolution.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/105/23/1.4904092.html;jsessionid=BiY8C2hT1zaZ_RzdKSTG1Af7.x-aip-live-03?itemId=/content/aip/journal/apl/105/23/10.1063/1.4904092&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/105/23/10.1063/1.4904092&pageURL=http://scitation.aip.org/content/aip/journal/apl/105/23/10.1063/1.4904092'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,