Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/105/24/10.1063/1.4904463
1.
1. S.-J. Su, T. Chiba, T. Takeda, and J. Kido, Adv. Mater. 20, 2125 (2008).
http://dx.doi.org/10.1002/adma.200701730
2.
2. Y. Sun, L. Duan, D. Zhang, J. Qiao, G. Dong, L. Wang, and Y. Qiu, Adv. Funct. Mater. 21, 1881 (2011).
http://dx.doi.org/10.1002/adfm.201002691
3.
3. I. D. Parker, J. Appl. Phys. 75, 1656 (1994).
http://dx.doi.org/10.1063/1.356350
4.
4. T. Matsushima and C. Adachi, Appl. Phys. Lett. 92, 063306 (2008).
http://dx.doi.org/10.1063/1.2844891
5.
5. D. J. Gundlach, T. N. Jackson, D. G. Schlom, and S. F. Nelson, Appl. Phys. Lett. 74, 3302 (1999).
http://dx.doi.org/10.1063/1.123325
6.
6. V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson, and J. A. Rogers, Science 303, 1644 (2004).
http://dx.doi.org/10.1126/science.1094196
7.
7. S. Duhm, G. Heimel, I. Salzmann, H. Glowatzki, R. L. Johnson, A. Vollmer, J. P. Rabe, and N. Koch, Nat. Mater. 7, 326 (2008).
http://dx.doi.org/10.1038/nmat2119
8.
8. T. Matsushima and H. Murata, J. Appl. Phys. 112, 024503 (2012).
http://dx.doi.org/10.1063/1.4735402
9.
9. G. Horowitz, M. E. Hajlaoui, and R. Hajlaoui, J. Appl. Phys. 87, 4456 (2000).
http://dx.doi.org/10.1063/1.373091
10.
10. T. W. Kelley and C. D. Frisbie, J. Phys. Chem. B 105, 4538 (2001).
http://dx.doi.org/10.1021/jp004519t
11.
11. S. Verlaak, V. Arkhipov, and P. Heremans, Appl. Phys. Lett. 82, 745 (2003).
http://dx.doi.org/10.1063/1.1541112
12.
12. S. D. Wang, T. Miyadera, T. Minari, Y. Aoyagi, and K. Tsukagoshi, Appl. Phys. Lett. 93, 043311 (2008).
http://dx.doi.org/10.1063/1.2967193
13.
13. R. J. Henderson, H. W. Chandler, A. R. Akisanya, H. Barber, and B. Moriarty, J. Eur. Ceram. Soc. 20, 1121 (2000).
http://dx.doi.org/10.1016/S0955-2219(99)00280-0
14.
14. M. Szanto, W. Bier, N. Frage, S. Hartmann, and Z. Yosibash, Int. J. Mech. Sci. 50, 405 (2008).
http://dx.doi.org/10.1016/j.ijmecsci.2007.10.004
15.
15. J. Shao, F. Liu, W. Dong, R. Tao, Z. Deng, X. Fang, and S. Dai, Mater. Lett. 68, 493 (2012).
http://dx.doi.org/10.1016/j.matlet.2011.11.040
16.
16. M. Kanari, T. Wakamatsu, R. G. G. Fatt, and I. Ihara, Appl. Phys. Express 4, 111603 (2011).
http://dx.doi.org/10.1143/APEX.4.111603
17.
17.See supplementary material at http://dx.doi.org/10.1063/1.4904463 for experimental procedures and estimation of mass densities.[Supplementary Material]
18.
18. J. Janczak and R. Kubiak, J. Alloys Compd. 190, 121 (1992).
http://dx.doi.org/10.1016/0925-8388(92)90187-E
19.
19. S. Heutz and T. S. Jones, J. Appl. Phys. 92, 3039 (2002).
http://dx.doi.org/10.1063/1.1499743
20.
20. Ionization energies of as-deposited and CIP H2PC films were measured to be 5.25 ± 0.01 and 5.24 ± 0.01 eV, respectively, with photoelectron yield spectroscopy (AC-2, Riken Keiki). There was no big difference in ionization energy between as-deposited and CIP films. Work function of ITO was measured to be 5.02 ± 0.01 eV with the same technique.
21.
21. M. A. Lampert and P. Mark, Current Injection in Solids ( Academic, New York, 1970).
22.
22. Z. Fang, L. Shan, T. E. Schlesinger, and A. G. Milnes, Mater. Sci. Eng., B 5, 397 (1990).
http://dx.doi.org/10.1016/0921-5107(90)90104-J
23.
23. T. Matsushima, M. Yahiro, and C. Adachi, Appl. Phys. Lett. 91, 103505 (2007).
http://dx.doi.org/10.1063/1.2779240
24.
24. M. J. Tadjer, R. E. Stahlbush, K. D. Hobart, P. J. McMarr, H. L. Hughes, E. A. Imhoff, F. J. Kub, S. K. Haney, and A. Agarwal, J. Electron. Mater. 39, 517 (2010).
http://dx.doi.org/10.1007/s11664-009-1058-y
http://aip.metastore.ingenta.com/content/aip/journal/apl/105/24/10.1063/1.4904463
Loading
/content/aip/journal/apl/105/24/10.1063/1.4904463
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/105/24/10.1063/1.4904463
2014-12-15
2016-09-26

Abstract

Spatial gaps between grains and other grains, substrates, or electrodes in organic electronic devices are one of the causes of the reduction in the electrical characteristics. In this study, we demonstrate that cold isostatic pressing (CIP) is an effective method to crush the gaps and enhance the electrical characteristics. CIP of metal-free phthalocyanine (H PC) films induced a decrease in the film thickness by 34%–40% because of the gap crush. The connection of smaller grains into a larger grain and planarization of the film surface were also observed in the CIP film. The crystal axes of the H PC crystallites were rearranged from the a-axis to the c-axis of the α-phase crystal structure in a direction perpendicular to the substrate by CIP, indicating favorable hole injection and transport in this direction because of a better overlap of orbitals. Thermally stimulated current measurements showed that deep hole traps disappeared and the total hole-trap density decreased after CIP. These CIP-induced changes of the film thicknesses, crystal axes and the hole traps lead to a marked increase in the hole mobility of the H PC films from 2.0 × 10−7 to 4.0 × 10−4 cm2/V s by 2000 times in the perpendicular direction. We believe that these findings are important for unveiling the underlying carrier injection and transport mechanisms of organic films and for enhancing the performance of future organic electronic devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/105/24/1.4904463.html;jsessionid=nkeSaZ_HkbJYZBA6F8mXSLG8.x-aip-live-02?itemId=/content/aip/journal/apl/105/24/10.1063/1.4904463&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/105/24/10.1063/1.4904463&pageURL=http://scitation.aip.org/content/aip/journal/apl/105/24/10.1063/1.4904463'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,