Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/105/24/10.1063/1.4904827
1.
1. P. Yeh, Optical Waves in Layered Media ( John Wiley & Sons, 1988).
2.
2. H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “ Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4, 3779 (2011).
http://dx.doi.org/10.1039/c1ee01297e
3.
3. W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications ( Springer-Verlag, Heidelberg, 2010).
4.
4. H.-T. Chen, J. F. O'Hara, A. K. Azad, and A. J. Taylor, “ Manipulation of terahertz radiation using metamaterials,” Laser Photonics Rev. 5, 513 (2011).
http://dx.doi.org/10.1002/lpor.201000043
5.
5. N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “ Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334, 333337 (2011).
http://dx.doi.org/10.1126/science.1210713
6.
6. X. J. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “ Broadband light bending with plasmonic nanoantennas,” Science 335, 427 (2012).
http://dx.doi.org/10.1126/science.1214686
7.
7. S. L. Sun, Q. He, S. Y. Xiao, Q. Xu, X. Li, and L. Zhou, “ Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11, 426 (2012).
http://dx.doi.org/10.1038/nmat3292
8.
8. N. K. Grady, J. E. Heyes, D. Roy Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “ Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304 (2013).
http://dx.doi.org/10.1126/science.1235399
9.
9. C. Pfeiffer and A. Grbic, “ Metamaterial Huygens' surfaces: Tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110, 197401 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.197401
10.
10. C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O'Hara, J. Booth, and D. R. Smith, “ An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54, 10 (2012).
http://dx.doi.org/10.1109/MAP.2012.6230714
11.
11. N. F. Yu and F. Capasso, “ Flat optics with designer metasurfaces,” Nat. Mater. 13, 139 (2014).
http://dx.doi.org/10.1038/nmat3839
12.
12. H.-T. Chen, J. F. Zhou, J. F. O'Hara, F. Chen, A. K. Azad, and A. J. Taylor, “ Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105, 073901 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.073901
13.
13. H.-T. Chen, J. F. Zhou, J. F. O'Hara, and A. J. Taylor, “ A numerical investigation of metamaterial antireflection coatings,” Int. J. Terahertz Sci. Technol. 3, 66 (2010).
http://dx.doi.org/10.11906/TST.066-073.2010.06.06
14.
14. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “ Optical-properties of 14 metals in the infrared and far infrared—Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt. 24, 4493 (1985).
http://dx.doi.org/10.1364/AO.24.004493
15.
15. T. M. Cotter, M. E. Thomas, and W. J. Tropf, “ Magnesium fluoride (MgF2),” Handbook of Optical Constants of Solids II, edited by E. D. Palik ( Academic Press, 1991).
16.
16. H. Tao, C. M. Bingham, D. Pilon, K. B. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “ A dual band terahertz metamaterial absorber,” J. Phys. D: Appl. Phys. 43, 225102 (2010).
http://dx.doi.org/10.1088/0022-3727/43/22/225102
17.
17. X. P. Shen, Y. Yang, Y. Z. Zang, J. Q. Gu, J. G. Han, W. L. Zhang, and T. J. Cui, “ Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101, 154102 (2012).
http://dx.doi.org/10.1063/1.4757879
18.
18. B. Y. Zhang, J. Hendrickson, and J. P. Guo, “ Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures,” J. Opt. Soc. Am. B 30, 656 (2013).
http://dx.doi.org/10.1364/JOSAB.30.000656
19.
19. X. L. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “ Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.045901
20.
20. L. Huang, D. Roy Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. J. Taylor, and H.-T. Chen, “ Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett. 37, 154 (2012).
http://dx.doi.org/10.1364/OL.37.000154
21.
21. J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. S. Cumming, “ Polarization insensitive, broadband terahertz metamaterial absorber,” Opt. Lett. 36, 3476 (2011).
http://dx.doi.org/10.1364/OL.36.003476
22.
22. J. Hendrickson, J. P. Guo, B. Y. Zhang, W. Buchwald, and R. Soref, “ Wideband perfect light absorber at midwave infrared using multiplexed metal structures,” Opt. Lett. 37, 371 (2012).
http://dx.doi.org/10.1364/OL.37.000371
23.
23. J.-Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “ Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8, 689 (2008).
http://dx.doi.org/10.1021/nl073296g
24.
24. F. Afshinmanesh, A. G. Curto, K. M. Milaninia, N. F. van Hulst, and M. L. Brongersma, “ Transparent metallic fractal electrodes for semiconductor devices,” Nano Lett. 14, 5068 (2014).
http://dx.doi.org/10.1021/nl501738b
http://aip.metastore.ingenta.com/content/aip/journal/apl/105/24/10.1063/1.4904827
Loading
/content/aip/journal/apl/105/24/10.1063/1.4904827
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/105/24/10.1063/1.4904827
2014-12-18
2016-09-30

Abstract

Light reflection at the boundary of two different media is one of the fundamental phenomena in optics, and reduction of reflection is highly desirable in many optical systems. Traditionally, optical antireflection has been accomplished using single- or multiple-layer dielectric films and graded index surface structures in various wavelength ranges. However, these approaches either impose strict requirements on the refractive index matching and film thickness, or involve complicated fabrication processes and non-planar surfaces that are challenging for device integration. Here, we demonstrate an antireflection coating strategy, both experimentally and numerically, by using metasurfaces with designer optical properties in the mid-wave infrared. Our results show that the metasurface antireflection is capable of eliminating reflection and enhancing transmission over a broad spectral band and a wide incidence angle range. The demonstrated antireflection technique has no requirement on the choice of materials and is scalable to other wavelengths.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/105/24/1.4904827.html;jsessionid=oE2tOJwL7PN2V-jfZvs-M71e.x-aip-live-03?itemId=/content/aip/journal/apl/105/24/10.1063/1.4904827&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/105/24/10.1063/1.4904827&pageURL=http://scitation.aip.org/content/aip/journal/apl/105/24/10.1063/1.4904827'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,