Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. P. Yeh, Optical Waves in Layered Media ( John Wiley & Sons, 1988).
2. H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “ Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4, 3779 (2011).
3. W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications ( Springer-Verlag, Heidelberg, 2010).
4. H.-T. Chen, J. F. O'Hara, A. K. Azad, and A. J. Taylor, “ Manipulation of terahertz radiation using metamaterials,” Laser Photonics Rev. 5, 513 (2011).
5. N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “ Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science 334, 333337 (2011).
6. X. J. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “ Broadband light bending with plasmonic nanoantennas,” Science 335, 427 (2012).
7. S. L. Sun, Q. He, S. Y. Xiao, Q. Xu, X. Li, and L. Zhou, “ Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11, 426 (2012).
8. N. K. Grady, J. E. Heyes, D. Roy Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “ Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340, 1304 (2013).
9. C. Pfeiffer and A. Grbic, “ Metamaterial Huygens' surfaces: Tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110, 197401 (2013).
10. C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O'Hara, J. Booth, and D. R. Smith, “ An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54, 10 (2012).
11. N. F. Yu and F. Capasso, “ Flat optics with designer metasurfaces,” Nat. Mater. 13, 139 (2014).
12. H.-T. Chen, J. F. Zhou, J. F. O'Hara, F. Chen, A. K. Azad, and A. J. Taylor, “ Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105, 073901 (2010).
13. H.-T. Chen, J. F. Zhou, J. F. O'Hara, and A. J. Taylor, “ A numerical investigation of metamaterial antireflection coatings,” Int. J. Terahertz Sci. Technol. 3, 66 (2010).
14. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “ Optical-properties of 14 metals in the infrared and far infrared—Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt. 24, 4493 (1985).
15. T. M. Cotter, M. E. Thomas, and W. J. Tropf, “ Magnesium fluoride (MgF2),” Handbook of Optical Constants of Solids II, edited by E. D. Palik ( Academic Press, 1991).
16. H. Tao, C. M. Bingham, D. Pilon, K. B. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “ A dual band terahertz metamaterial absorber,” J. Phys. D: Appl. Phys. 43, 225102 (2010).
17. X. P. Shen, Y. Yang, Y. Z. Zang, J. Q. Gu, J. G. Han, W. L. Zhang, and T. J. Cui, “ Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101, 154102 (2012).
18. B. Y. Zhang, J. Hendrickson, and J. P. Guo, “ Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures,” J. Opt. Soc. Am. B 30, 656 (2013).
19. X. L. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “ Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
20. L. Huang, D. Roy Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. J. Taylor, and H.-T. Chen, “ Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett. 37, 154 (2012).
21. J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. S. Cumming, “ Polarization insensitive, broadband terahertz metamaterial absorber,” Opt. Lett. 36, 3476 (2011).
22. J. Hendrickson, J. P. Guo, B. Y. Zhang, W. Buchwald, and R. Soref, “ Wideband perfect light absorber at midwave infrared using multiplexed metal structures,” Opt. Lett. 37, 371 (2012).
23. J.-Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “ Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8, 689 (2008).
24. F. Afshinmanesh, A. G. Curto, K. M. Milaninia, N. F. van Hulst, and M. L. Brongersma, “ Transparent metallic fractal electrodes for semiconductor devices,” Nano Lett. 14, 5068 (2014).

Data & Media loading...


Article metrics loading...



Light reflection at the boundary of two different media is one of the fundamental phenomena in optics, and reduction of reflection is highly desirable in many optical systems. Traditionally, optical antireflection has been accomplished using single- or multiple-layer dielectric films and graded index surface structures in various wavelength ranges. However, these approaches either impose strict requirements on the refractive index matching and film thickness, or involve complicated fabrication processes and non-planar surfaces that are challenging for device integration. Here, we demonstrate an antireflection coating strategy, both experimentally and numerically, by using metasurfaces with designer optical properties in the mid-wave infrared. Our results show that the metasurface antireflection is capable of eliminating reflection and enhancing transmission over a broad spectral band and a wide incidence angle range. The demonstrated antireflection technique has no requirement on the choice of materials and is scalable to other wavelengths.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd