Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/105/25/10.1063/1.4904940
1.
1. F. C. Krebs, Sol. Energy Mater. Sol. Cells 93, 394 (2009).
http://dx.doi.org/10.1016/j.solmat.2008.10.004
2.
2. N. Espinosa, R. García-Valverde, A. Urbina, and F. C. Krebs, Sol. Energy Mater. Sol. Cells 95, 1293 (2011).
http://dx.doi.org/10.1016/j.solmat.2010.08.020
3.
3. S. Lizin, S. Van Passel, E. De Schepper, W. Maes, L. Lutsen, J. Manca, and D. Vanderzande, Energy Environ. Sci. 6, 3136 (2013).
http://dx.doi.org/10.1039/c3ee42653j
4.
4. C. J. Mulligan, M. Wilson, G. Bryant, B. Vaughan, X. Zhou, W. J. Belcher, and P. C. Dastoor, Sol. Energy Mater. Sol. Cells 120, 9 (2014).
http://dx.doi.org/10.1016/j.solmat.2013.07.041
5.
5. J. Du, S. Pei, L. Ma, and H.-M. Cheng, Adv. Mater. 26, 1958 (2014).
http://dx.doi.org/10.1002/adma.201304135
6.
6. M. Manceau, D. Angmo, M. Jørgensen, and F. C. Krebs, Org. Electron. 12, 566 (2011).
http://dx.doi.org/10.1016/j.orgel.2011.01.009
7.
7. W. Gaynor, J.-Y. Lee, and P. Peumans, ACS Nano 4, 30 (2010).
http://dx.doi.org/10.1021/nn900758e
8.
8. D. Arthur, R. P. Silvy, P. Wallis, Y. Tan, J.-D. R. Rocha, D. Resasco, R. Praino, and W. Hurley, MRS Bull. 37, 1297 (2012).
http://dx.doi.org/10.1557/mrs.2012.276
9.
9. L. Hu, J. Li, J. Liu, G. Grüner, and T. Marks, Nanotechnology 21, 155202 (2010).
http://dx.doi.org/10.1088/0957-4484/21/15/155202
10.
10. A. Falco, L. Cinà, G. Scarpa, P. Lugli, and A. Abdellah, ACS Appl. Mater. Interfaces 6, 10593 (2014).
http://dx.doi.org/10.1021/am5022123
11.
11. Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, Science 305, 1273 (2004).
http://dx.doi.org/10.1126/science.1101243
12.
12. J. van de Lagemaat, T. M. Barnes, G. Rumbles, S. E. Shaheen, T. J. Coutts, C. Weeks, I. Levitsky, J. Peltola, and P. Glatkowski, Appl. Phys. Lett. 88, 233503 (2006).
http://dx.doi.org/10.1063/1.2210081
13.
13. D.-Y. Cho, K. Eun, S.-H. Choa, and H.-K. Kim, Carbon 66, 530 (2014).
http://dx.doi.org/10.1016/j.carbon.2013.09.035
14.
14. A. Du Pasquier, H. E. Unalan, A. Kanwal, S. Miller, and M. Chhowalla, Appl. Phys. Lett. 87, 203511 (2005).
http://dx.doi.org/10.1063/1.2132065
15.
15. M. W. Rowell, M. A. Topinka, M. D. McGehee, H.-J. Prall, G. Dennler, N. S. Sariciftci, L. Hu, and G. Gruner, Appl. Phys. Lett. 88, 233506 (2006).
http://dx.doi.org/10.1063/1.2209887
16.
16. R. C. Tenent, T. M. Barnes, J. D. Bergeson, A. J. Ferguson, B. To, L. M. Gedvilas, M. J. Heben, and J. L. Blackburn, Adv. Mater. 21, 3210 (2009).
http://dx.doi.org/10.1002/adma.200803551
17.
17. A. Lucas, C. Zakri, M. Maugey, M. Pasquali, P. Van Der Schoot, and P. Poulin, J. Phys. Chem. C 113, 20599 (2009).
http://dx.doi.org/10.1021/jp906296y
18.
18. D. Hecht, L. Hu, and G. Grüner, Appl. Phys. Lett. 89, 133112 (2006).
http://dx.doi.org/10.1063/1.2356999
19.
19. P. E. Lyons, S. De, F. Blighe, V. Nicolosi, L. F. C. Pereira, M. S. Ferreira, and J. N. Coleman, J. Appl. Phys. 104, 044302 (2008).
http://dx.doi.org/10.1063/1.2968437
20.
20. P. N. Nirmalraj, P. E. Lyons, S. De, J. N. Coleman, and J. J. Boland, Nano Lett. 9, 3890 (2009).
http://dx.doi.org/10.1021/nl9020914
21.
21. S. Fogden, K. Kim, C. Ma, K. Ligsay, and G. McFarlane, in Nanotechnology 2011: Advanced Materials, CNTs, Particles, Films and Composites, edited by M. Laudon and B. F. Romanowicz ( Nano Science and Technology Institute, Boston, 2011), pp. 163166.
22.
22. S. Fogden, C. A. Howard, R. K. Heenan, N. T. Skipper, and M. S. P. Shaffer, ACS Nano 6, 54 (2012).
http://dx.doi.org/10.1021/nn2041494
23.
23. A. Pénicaud, P. Poulin, A. Derré, E. Anglaret, and P. Petit, J. Am. Chem. Soc. 127, 8 (2005).
http://dx.doi.org/10.1021/ja0443373
24.
24. M. W. Rowell and M. D. McGehee, Energy Environ. Sci. 4, 131 (2011).
http://dx.doi.org/10.1039/c0ee00373e
25.
25. D.-W. Shin, J. H. Lee, Y.-H. Kim, S. M. Yu, S.-Y. Park, and J.-B. Yoo, Nanotechnology 20, 475703 (2009).
http://dx.doi.org/10.1088/0957-4484/20/47/475703
26.
26. A. Kaskela, A. G. Nasibulin, M. Y. Timmermans, B. Aitchison, A. Papadimitratos, Y. Tian, Z. Zhu, H. Jiang, D. P. Brown, A. Zakhidov, and E. I. Kauppinen, Nano Lett. 10, 4349 (2010).
http://dx.doi.org/10.1021/nl101680s
27.
27. W.-B. Liu, S. Pei, J. Du, B. Liu, L. Gao, Y. Su, C. Liu, and H.-M. Cheng, Adv. Funct. Mater. 21, 2330 (2011).
http://dx.doi.org/10.1002/adfm.201002257
28.
28. G. Xiao, Y. Tao, J. Lu, Z. Zhang, and D. Kingston, J. Mater. Sci. 46, 3399 (2011).
http://dx.doi.org/10.1007/s10853-010-5228-3
29.
29. F. Mirri, A. W. K. Ma, T. T. Hsu, N. Behabtu, S. L. Eichmann, C. C. Young, D. E. Tsentalovich, and M. Pasquali, ACS Nano 6, 9737 (2012).
http://dx.doi.org/10.1021/nn303201g
30.
30. A. Pierre, S. Lu, I. A. Howard, A. Facchetti, and A. C. Arias, J. Appl. Phys. 113, 154506 (2013).
http://dx.doi.org/10.1063/1.4801662
31.
31. J. Wang, J. Zhang, A. K. Sundramoorthy, P. Chen, and M. B. Chan-Park, Nanoscale 6, 4560 (2014).
http://dx.doi.org/10.1039/c3nr06386k
32.
32. S. Choi, W. J. Potscavage, and B. Kippelen, J. Appl. Phys. 106, 054507 (2009).
http://dx.doi.org/10.1063/1.3211850
http://aip.metastore.ingenta.com/content/aip/journal/apl/105/25/10.1063/1.4904940
Loading
/content/aip/journal/apl/105/25/10.1063/1.4904940
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/105/25/10.1063/1.4904940
2014-12-22
2016-09-28

Abstract

Solutions of unbundled and unbroken single-walled carbon nanotubes have been prepared using a reductive dissolution process. Transparent conductivefilms spray-coated from these solutions show a nearly twofold improvement in the ratio of electrical conductivity to optical absorptivity versus those deposited from conventional aqueous dispersions, due to substantial de-aggregation and sizable nanotube lengths. These transparent electrodes have been utilized to fabricate P3HT-PCBM organic solar cells achieving power conversion efficiencies up to 2.3%, comparable to those of solar cells using indium tin oxide transparent electrodes.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/105/25/1.4904940.html;jsessionid=wDvpd7oRTGUt5KgL5gDwcf9b.x-aip-live-03?itemId=/content/aip/journal/apl/105/25/10.1063/1.4904940&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/105/25/10.1063/1.4904940&pageURL=http://scitation.aip.org/content/aip/journal/apl/105/25/10.1063/1.4904940'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,